Plot Contribution or Loadings of Traits for each Dimension/Factor from pcss.core
Output
Source: R/contrib.pcss.core.R
contrib.pcss.core.Rd
contrib.pcss.core
generates bar plots of contributions or loadings
("right singular vectors") of traits for each dimension/factor from the
output of pcss.core
.
Usage
# S3 method for class 'pcss.core'
contrib(
x,
ndim = NULL,
plot.loadings = FALSE,
use.sign = TRUE,
sort.value = TRUE,
...
)
Arguments
- x
An object of class
pcss.core
.- ndim
The number of dimensions for which contribution or loadings of traits are to be plotted.
- plot.loadings
If
TRUE
, the loadings or "right singular vectors" are plotted instead of contributions. Default isFALSE
.- use.sign
If
TRUE
, contributions of variables are given the sign of their corresponding coordinates. Default isTRUE
.- sort.value
If
TRUE
, the bars are sorted according to their value.- ...
Unused.
Examples
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Prepare example data
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
library(EvaluateCore)
# Get data from EvaluateCore
data("cassava_EC", package = "EvaluateCore")
data = cbind(Genotypes = rownames(cassava_EC), cassava_EC)
quant <- c("NMSR", "TTRN", "TFWSR", "TTRW", "TFWSS", "TTSW", "TTPW", "AVPW",
"ARSR", "SRDM")
qual <- c("CUAL", "LNGS", "PTLC", "DSTA", "LFRT", "LBTEF", "CBTR", "NMLB",
"ANGB", "CUAL9M", "LVC9M", "TNPR9M", "PL9M", "STRP", "STRC",
"PSTR")
rownames(data) <- NULL
# Convert qualitative data columns to factor
data[, qual] <- lapply(data[, qual], as.factor)
library(FactoMineR)
library(factoextra)
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# With quantitative data
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
out1 <- pcss.core(data = data, names = "Genotypes",
quantitative = quant,
qualitative = NULL, eigen.threshold = NULL, size = 0.2,
var.threshold = 0.75)
# Plot contributions of genotypes - with sign - sorted
contrib(x = out1, ndim = 5)
# Plot contributions of genotypes - without sign - sorted
contrib(x = out1, ndim = 5, use.sign = FALSE)
# Plot loadings/coordinates of genotypes - with sign - sorted
contrib(x = out1, ndim = 5, plot.loadings = TRUE)
# Plot contributions of genotypes - with sign - unsorted
contrib(x = out1, ndim = 5, sort.value = FALSE)
# Plot biplot with factoextra
fviz_contrib(out1$raw.out, choice = "var", axes = 1)
fviz_contrib(out1$raw.out, choice = "var", axes = 2)
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Get core sets with PCSS (qualitative data)
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
out2 <- pcss.core(data = data, names = "Genotypes", quantitative = NULL,
qualitative = qual, eigen.threshold = NULL,
size = 0.2, var.threshold = 0.75)
# Plot contributions of genotypes - with sign - sorted
contrib(x = out2, ndim = 5)
# Plot contributions of genotypes - without sign - sorted
contrib(x = out2, ndim = 5, use.sign = FALSE)
# Plot loadings/coordinates of genotypes - with sign - sorted
contrib(x = out2, ndim = 5, plot.loadings = TRUE)
# Plot contributions of genotypes - with sign - unsorted
contrib(x = out2, ndim = 5, sort.value = FALSE)
# Plot biplot with factoextra
fviz_contrib(out2$raw.out, choice = "var", axes = 1)
fviz_contrib(out2$raw.out, choice = "var", axes = 2)
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Get core sets with PCSS (quantitative and qualitative data)
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
out3 <- pcss.core(data = data, names = "Genotypes",
quantitative = quant,
qualitative = qual, eigen.threshold = NULL)
# Plot contributions of genotypes - sorted
contrib(x = out3, ndim = 5)
# Plot contributions of genotypes - without sign - sorted
contrib(x = out3, ndim = 5, use.sign = FALSE)
# Plot loadings/coordinates of genotypes - sorted
contrib(x = out3, ndim = 5, plot.loadings = TRUE)
# Plot contributions of genotypes - with sign - unsorted
contrib(x = out3, ndim = 5, sort.value = FALSE)
# Plot biplot with factoextra
# fviz_contrib(out3$raw.out, choice = "quanti.var", axes = 1)
# fviz_contrib(out3$raw.out, choice = "quali.var", axes = 1)
# fviz_contrib(out3$raw.out, choice = "quanti.var", axes = 2)
# fviz_contrib(out3$raw.out, choice = "quali.var", axes = 2)