An example germplasm characterisation data of a subset of IITA Cassava collection (International Institute of Tropical Agriculture et al. 2019) . Includes data on 26 (out of 62) descriptors for 1684 (out of 2170) accessions. It is used to demonstrate the various functions of EvaluateCore package.

cassava_EC

Format

A data frame with 58 columns:

CUAL

Colour of unexpanded apical leaves

LNGS

Length of stipules

PTLC

Petiole colour

DSTA

Distribution of anthocyanin

LFRT

Leaf retention

LBTEF

Level of branching at the end of flowering

CBTR

Colour of boiled tuberous root

NMLB

Number of levels of branching

ANGB

Angle of branching

CUAL9M

Colours of unexpanded apical leaves at 9 months

LVC9M

Leaf vein colour at 9 months

TNPR9M

Total number of plants remaining per accession at 9 months

PL9M

Petiole length at 9 months

STRP

Storage root peduncle

STRC

Storage root constrictions

PSTR

Position of root

NMSR

Number of storage root per plant

TTRN

Total root number per plant

TFWSR

Total fresh weight of storage root per plant

TTRW

Total root weight per plant

TFWSS

Total fresh weight of storage shoot per plant

TTSW

Total shoot weight per plant

TTPW

Total plant weight

AVPW

Average plant weight

ARSR

Amount of rotted storage root per plant

SRDM

Storage root dry matter

Details

Further details on how the example dataset was built from the original data is available online.

References

International Institute of Tropical Agriculture, Benjamin F, Marimagne T (2019). “Cassava morphological characterization. Version 2018.1.” www.genesys-pgr.org.

Examples


data(cassava_EC)
summary(cassava_EC)
#>      CUAL               LNGS               PTLC               DSTA          
#>  Length:1684        Length:1684        Length:1684        Length:1684       
#>  Class :character   Class :character   Class :character   Class :character  
#>  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
#>                                                                             
#>                                                                             
#>                                                                             
#>      LFRT              LBTEF               CBTR               NMLB          
#>  Length:1684        Length:1684        Length:1684        Length:1684       
#>  Class :character   Class :character   Class :character   Class :character  
#>  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
#>                                                                             
#>                                                                             
#>                                                                             
#>      ANGB              CUAL9M             LVC9M              TNPR9M         
#>  Length:1684        Length:1684        Length:1684        Length:1684       
#>  Class :character   Class :character   Class :character   Class :character  
#>  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
#>                                                                             
#>                                                                             
#>                                                                             
#>      PL9M               STRP               STRC               PSTR          
#>  Length:1684        Length:1684        Length:1684        Length:1684       
#>  Class :character   Class :character   Class :character   Class :character  
#>  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
#>                                                                             
#>                                                                             
#>                                                                             
#>       NMSR            TTRN            TFWSR             TTRW       
#>  Min.   : 1.00   Min.   : 0.250   Min.   : 0.000   Min.   : 0.000  
#>  1st Qu.: 6.00   1st Qu.: 2.500   1st Qu.: 2.200   1st Qu.: 0.900  
#>  Median :10.00   Median : 3.600   Median : 4.200   Median : 1.445  
#>  Mean   :11.72   Mean   : 3.854   Mean   : 5.429   Mean   : 1.898  
#>  3rd Qu.:16.00   3rd Qu.: 5.000   3rd Qu.: 7.000   3rd Qu.: 2.400  
#>  Max.   :55.00   Max.   :13.750   Max.   :40.000   Max.   :20.200  
#>      TFWSS             TTSW             TTPW            AVPW       
#>  Min.   : 0.200   Min.   : 0.040   Min.   : 0.40   Min.   : 0.200  
#>  1st Qu.: 2.600   1st Qu.: 1.000   1st Qu.: 5.20   1st Qu.: 2.062  
#>  Median : 5.400   Median : 1.933   Median :10.00   Median : 3.400  
#>  Mean   : 6.943   Mean   : 2.388   Mean   :12.37   Mean   : 4.285  
#>  3rd Qu.:10.000   3rd Qu.: 3.200   3rd Qu.:16.45   3rd Qu.: 5.533  
#>  Max.   :42.000   Max.   :22.000   Max.   :80.00   Max.   :33.000  
#>       ARSR             SRDM      
#>  Min.   : 0.000   Min.   : 0.50  
#>  1st Qu.: 0.000   1st Qu.:35.20  
#>  Median : 1.000   Median :38.50  
#>  Mean   : 1.858   Mean   :37.77  
#>  3rd Qu.: 3.000   3rd Qu.:41.20  
#>  Max.   :18.000   Max.   :48.90  

quant <- c("NMSR", "TTRN", "TFWSR", "TTRW", "TFWSS", "TTSW", "TTPW", "AVPW",
           "ARSR", "SRDM")
qual <- c("CUAL", "LNGS", "PTLC", "DSTA", "LFRT", "LBTEF", "CBTR", "NMLB",
          "ANGB", "CUAL9M", "LVC9M", "TNPR9M", "PL9M", "STRP", "STRC",
          "PSTR")

lapply(seq_along(cassava_EC[, qual]),
       function(i) barplot(table(cassava_EC[, qual][, i]),
                           xlab = names(cassava_EC[, qual])[i]))
















#> [[1]]
#>      [,1]
#> [1,]  0.7
#> [2,]  1.9
#> [3,]  3.1
#> [4,]  4.3
#> [5,]  5.5
#> 
#> [[2]]
#>      [,1]
#> [1,]  0.7
#> [2,]  1.9
#> [3,]  3.1
#> 
#> [[3]]
#>      [,1]
#> [1,]  0.7
#> [2,]  1.9
#> [3,]  3.1
#> [4,]  4.3
#> [5,]  5.5
#> 
#> [[4]]
#>      [,1]
#> [1,]  0.7
#> [2,]  1.9
#> [3,]  3.1
#> [4,]  4.3
#> [5,]  5.5
#> 
#> [[5]]
#>      [,1]
#> [1,]  0.7
#> [2,]  1.9
#> [3,]  3.1
#> [4,]  4.3
#> [5,]  5.5
#> 
#> [[6]]
#>      [,1]
#> [1,]  0.7
#> [2,]  1.9
#> [3,]  3.1
#> [4,]  4.3
#> [5,]  5.5
#> [6,]  6.7
#> 
#> [[7]]
#>      [,1]
#> [1,]  0.7
#> [2,]  1.9
#> [3,]  3.1
#> 
#> [[8]]
#>       [,1]
#>  [1,]  0.7
#>  [2,]  1.9
#>  [3,]  3.1
#>  [4,]  4.3
#>  [5,]  5.5
#>  [6,]  6.7
#>  [7,]  7.9
#>  [8,]  9.1
#>  [9,] 10.3
#> [10,] 11.5
#> 
#> [[9]]
#>      [,1]
#> [1,]  0.7
#> [2,]  1.9
#> [3,]  3.1
#> [4,]  4.3
#> 
#> [[10]]
#>      [,1]
#> [1,]  0.7
#> [2,]  1.9
#> [3,]  3.1
#> [4,]  4.3
#> [5,]  5.5
#> 
#> [[11]]
#>      [,1]
#> [1,]  0.7
#> [2,]  1.9
#> [3,]  3.1
#> [4,]  4.3
#> [5,]  5.5
#> 
#> [[12]]
#>      [,1]
#> [1,]  0.7
#> [2,]  1.9
#> [3,]  3.1
#> [4,]  4.3
#> [5,]  5.5
#> 
#> [[13]]
#>      [,1]
#> [1,]  0.7
#> [2,]  1.9
#> [3,]  3.1
#> 
#> [[14]]
#>      [,1]
#> [1,]  0.7
#> [2,]  1.9
#> [3,]  3.1
#> [4,]  4.3
#> 
#> [[15]]
#>      [,1]
#> [1,]  0.7
#> [2,]  1.9
#> 
#> [[16]]
#>      [,1]
#> [1,]  0.7
#> [2,]  1.9
#> [3,]  3.1
#> 

lapply(seq_along(cassava_EC[, quant]),
       function(i) hist(table(cassava_EC[, quant][, i]),
                        xlab = names(cassava_EC[, quant])[i],
                        main = ""))










#> [[1]]
#> $breaks
#> [1]   0  20  40  60  80 100 120
#> 
#> $counts
#> [1] 18  5  5  6  7  1
#> 
#> $density
#> [1] 0.021428571 0.005952381 0.005952381 0.007142857 0.008333333 0.001190476
#> 
#> $mids
#> [1]  10  30  50  70  90 110
#> 
#> $xname
#> [1] "table(cassava_EC[, quant][, i])"
#> 
#> $equidist
#> [1] TRUE
#> 
#> attr(,"class")
#> [1] "histogram"
#> 
#> [[2]]
#> $breaks
#>  [1]   0  20  40  60  80 100 120 140 160 180
#> 
#> $counts
#> [1] 72  9  5  2  0  1  2  0  1
#> 
#> $density
#> [1] 0.0391304348 0.0048913043 0.0027173913 0.0010869565 0.0000000000
#> [6] 0.0005434783 0.0010869565 0.0000000000 0.0005434783
#> 
#> $mids
#> [1]  10  30  50  70  90 110 130 150 170
#> 
#> $xname
#> [1] "table(cassava_EC[, quant][, i])"
#> 
#> $equidist
#> [1] TRUE
#> 
#> attr(,"class")
#> [1] "histogram"
#> 
#> [[3]]
#> $breaks
#> [1]  0 10 20 30 40 50 60 70 80
#> 
#> $counts
#> [1] 77 13  8 15  5  1  2  2
#> 
#> $density
#> [1] 0.0626016260 0.0105691057 0.0065040650 0.0121951220 0.0040650407
#> [6] 0.0008130081 0.0016260163 0.0016260163
#> 
#> $mids
#> [1]  5 15 25 35 45 55 65 75
#> 
#> $xname
#> [1] "table(cassava_EC[, quant][, i])"
#> 
#> $equidist
#> [1] TRUE
#> 
#> attr(,"class")
#> [1] "histogram"
#> 
#> [[4]]
#> $breaks
#>  [1]   0  10  20  30  40  50  60  70  80  90 100
#> 
#> $counts
#>  [1] 204  24   7   2   2   2   2   0   0   1
#> 
#> $density
#>  [1] 0.0836065574 0.0098360656 0.0028688525 0.0008196721 0.0008196721
#>  [6] 0.0008196721 0.0008196721 0.0000000000 0.0000000000 0.0004098361
#> 
#> $mids
#>  [1]  5 15 25 35 45 55 65 75 85 95
#> 
#> $xname
#> [1] "table(cassava_EC[, quant][, i])"
#> 
#> $equidist
#> [1] TRUE
#> 
#> attr(,"class")
#> [1] "histogram"
#> 
#> [[5]]
#> $breaks
#>  [1]  0  5 10 15 20 25 30 35 40 45 50 55 60
#> 
#> $counts
#>  [1] 75 18 11  9  9  4  5  5  6  1  1  1
#> 
#> $density
#>  [1] 0.103448276 0.024827586 0.015172414 0.012413793 0.012413793 0.005517241
#>  [7] 0.006896552 0.006896552 0.008275862 0.001379310 0.001379310 0.001379310
#> 
#> $mids
#>  [1]  2.5  7.5 12.5 17.5 22.5 27.5 32.5 37.5 42.5 47.5 52.5 57.5
#> 
#> $xname
#> [1] "table(cassava_EC[, quant][, i])"
#> 
#> $equidist
#> [1] TRUE
#> 
#> attr(,"class")
#> [1] "histogram"
#> 
#> [[6]]
#> $breaks
#>  [1]  0  5 10 15 20 25 30 35 40 45 50 55 60
#> 
#> $counts
#>  [1] 203  37  18   6   5   3   3   6   0   0   1   1
#> 
#> $density
#>  [1] 0.1434628975 0.0261484099 0.0127208481 0.0042402827 0.0035335689
#>  [6] 0.0021201413 0.0021201413 0.0042402827 0.0000000000 0.0000000000
#> [11] 0.0007067138 0.0007067138
#> 
#> $mids
#>  [1]  2.5  7.5 12.5 17.5 22.5 27.5 32.5 37.5 42.5 47.5 52.5 57.5
#> 
#> $xname
#> [1] "table(cassava_EC[, quant][, i])"
#> 
#> $equidist
#> [1] TRUE
#> 
#> attr(,"class")
#> [1] "histogram"
#> 
#> [[7]]
#> $breaks
#> [1]  0  5 10 15 20 25 30 35
#> 
#> $counts
#> [1] 127  32  32  25   8   5   1
#> 
#> $density
#> [1] 0.1104347826 0.0278260870 0.0278260870 0.0217391304 0.0069565217
#> [6] 0.0043478261 0.0008695652
#> 
#> $mids
#> [1]  2.5  7.5 12.5 17.5 22.5 27.5 32.5
#> 
#> $xname
#> [1] "table(cassava_EC[, quant][, i])"
#> 
#> $equidist
#> [1] TRUE
#> 
#> attr(,"class")
#> [1] "histogram"
#> 
#> [[8]]
#> $breaks
#> [1]  0  5 10 15 20 25 30 35
#> 
#> $counts
#> [1] 347  41  19   3   7   4   2
#> 
#> $density
#> [1] 0.1640661939 0.0193853428 0.0089834515 0.0014184397 0.0033096927
#> [6] 0.0018912530 0.0009456265
#> 
#> $mids
#> [1]  2.5  7.5 12.5 17.5 22.5 27.5 32.5
#> 
#> $xname
#> [1] "table(cassava_EC[, quant][, i])"
#> 
#> $equidist
#> [1] TRUE
#> 
#> attr(,"class")
#> [1] "histogram"
#> 
#> [[9]]
#> $breaks
#> [1]   0 100 200 300 400 500 600 700
#> 
#> $counts
#> [1] 12  2  2  0  0  0  1
#> 
#> $density
#> [1] 0.0070588235 0.0011764706 0.0011764706 0.0000000000 0.0000000000
#> [6] 0.0000000000 0.0005882353
#> 
#> $mids
#> [1]  50 150 250 350 450 550 650
#> 
#> $xname
#> [1] "table(cassava_EC[, quant][, i])"
#> 
#> $equidist
#> [1] TRUE
#> 
#> attr(,"class")
#> [1] "histogram"
#> 
#> [[10]]
#> $breaks
#> [1]  0  5 10 15 20 25 30
#> 
#> $counts
#> [1] 123  49  40  13  11   1
#> 
#> $density
#> [1] 0.1037974684 0.0413502110 0.0337552743 0.0109704641 0.0092827004
#> [6] 0.0008438819
#> 
#> $mids
#> [1]  2.5  7.5 12.5 17.5 22.5 27.5
#> 
#> $xname
#> [1] "table(cassava_EC[, quant][, i])"
#> 
#> $equidist
#> [1] TRUE
#> 
#> attr(,"class")
#> [1] "histogram"
#>