Skip to contents

Compare the distribution frequencies of qualitative traits between entire collection (EC) and core set (CS) by Chi-squared test for homogeneity (Pearson 1900; Snedecor and Irwin 1933) .

Usage

chisquare.evaluate.core(data, names, qualitative, selected, na.omit = TRUE)

Arguments

data

The data as a data frame object. The data frame should possess one row per individual and columns with the individual names and multiple trait/character data.

names

Name of column with the individual names as a character string.

qualitative

Name of columns with the qualitative traits as a character vector.

selected

Character vector with the names of individuals selected in core collection and present in the names column.

na.omit

logical. If TRUE, missing values (NA) are ignored and not included as a distinct factor level for analysis. Default is TRUE.

Value

A a data frame with the following columns.

Trait

The qualitative trait.

EC_No.Classes

The number of classes in the trait for EC.

EC_Classes

The frequency of the classes in the trait for EC.

CS_No.Classes

The number of classes in the trait for CS.

CS_Classes

The frequency of the classes in the trait for CS.

chisq_statistic

The \(\chi^{2}\) test statistic.

chisq_pvalue

The p value for the test statistic.

chisq_significance

The significance of the test statistic (*: p \(\leq\) 0.01; **: p \(\leq\) 0.05; ns: p \( > \) 0.05).

References

Pearson K (1900). “X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling.” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 50(302), 157–175.

Snedecor G, Irwin MR (1933). “On the chi-square test for homogeneity.” Iowa State College Journal of Science, 8, 75–81.

See also

Examples


data("cassava_CC")
data("cassava_EC")

ec <- cbind(genotypes = rownames(cassava_EC), cassava_EC)
ec$genotypes <- as.character(ec$genotypes)
rownames(ec) <- NULL

core <- rownames(cassava_CC)

quant <- c("NMSR", "TTRN", "TFWSR", "TTRW", "TFWSS", "TTSW", "TTPW", "AVPW",
           "ARSR", "SRDM")
qual <- c("CUAL", "LNGS", "PTLC", "DSTA", "LFRT", "LBTEF", "CBTR", "NMLB",
          "ANGB", "CUAL9M", "LVC9M", "TNPR9M", "PL9M", "STRP", "STRC",
          "PSTR")

ec[, qual] <- lapply(ec[, qual],
                     function(x) factor(as.factor(x)))

chisquare.evaluate.core(data = ec, names = "genotypes",
                        qualitative = qual, selected = core)
#>     Trait Count EC_No.Classes
#> 1    CUAL  1684             5
#> 2    LNGS  1684             3
#> 3    PTLC  1684             5
#> 4    DSTA  1684             5
#> 5    LFRT  1684             5
#> 6   LBTEF  1684             6
#> 7    CBTR  1684             3
#> 8    NMLB  1684            10
#> 9    ANGB  1684             4
#> 10 CUAL9M  1684             5
#> 11  LVC9M  1684             5
#> 12 TNPR9M  1684             5
#> 13   PL9M  1684             3
#> 14   STRP  1684             4
#> 15   STRC  1684             2
#> 16   PSTR  1684             3
#>                                                                                                                           EC_Classes
#> 1                                                         Dark green(321); Green(2); Green purple(889); Light green(48); Purple(424)
#> 2                                                                                                 Long(741); Medium(791); Short(152)
#> 3                                                          Dark green(20); Green purple(1008); Light green(50); Purple(578); Red(28)
#> 4                                           Absent(76); Central part(770); Top and bottom(50); Top part(188); Totally pigmented(600)
#> 5  100% leaf retention(1); 25-50% leaf retention(679); 50-75% leaf retention(897); <100% leaf retention(83); <25% leaf retention(24)
#> 6                                                                                      0(404); 1(250); 2(388); 3(489); 4(140); 5(13)
#> 7                                                                                                Cream(1048); White(610); Yellow(26)
#> 8                                                             0(397); 1(185); 2(308); 3(506); 4(195); 5(72); 6(15); 7(3); 8(2); 9(1)
#> 9                                                                         150-300(468); 450-600(785); 750-900(34); No branching(397)
#> 10                                                       Dark green(566); Green(47); Green purple(435); Light green(33); Purple(603)
#> 11                                                       Dark green(624); Green(14); Green purple(896); Light green(110); Purple(40)
#> 12                                                                                            1(140); 2(252); 3(301); 4(361); 5(630)
#> 13                                                                     Long (25-30cm)(887); Medium (15-20cm)(792); Short (5-10cm)(5)
#> 14                                                                              Absent(555); Intermediate(459); Long(43); Short(627)
#> 15                                                                                                         Absent(721); Present(963)
#> 16                                                       Irregular(556); Tending toward horizontal(1125); Tending toward vertical(3)
#>    CS_No.Classes
#> 1              4
#> 2              3
#> 3              5
#> 4              5
#> 5              4
#> 6              6
#> 7              3
#> 8              9
#> 9              4
#> 10             5
#> 11             5
#> 12             5
#> 13             2
#> 14             4
#> 15             2
#> 16             2
#>                                                                                                                        CS_Classes
#> 1                                                          Dark green(31); Green(0); Green purple(89); Light green(6); Purple(42)
#> 2                                                                                                 Long(72); Medium(72); Short(24)
#> 3                                                            Dark green(7); Green purple(99); Light green(12); Purple(43); Red(7)
#> 4                                            Absent(22); Central part(74); Top and bottom(6); Top part(19); Totally pigmented(47)
#> 5  100% leaf retention(0); 25-50% leaf retention(64); 50-75% leaf retention(88); <100% leaf retention(14); <25% leaf retention(2)
#> 6                                                                                         0(32); 1(25); 2(37); 3(43); 4(28); 5(3)
#> 7                                                                                                 Cream(94); White(70); Yellow(4)
#> 8                                                                0(30); 1(20); 2(30); 3(54); 4(18); 5(12); 6(2); 7(1); 8(1); 9(0)
#> 9                                                                          150-300(54); 450-600(76); 750-900(8); No branching(30)
#> 10                                                         Dark green(51); Green(8); Green purple(48); Light green(5); Purple(56)
#> 11                                                         Dark green(60); Green(4); Green purple(84); Light green(17); Purple(3)
#> 12                                                                                              1(20); 2(31); 3(31); 4(32); 5(54)
#> 13                                                                    Long (25-30cm)(86); Medium (15-20cm)(82); Short (5-10cm)(0)
#> 14                                                                               Absent(54); Intermediate(51); Long(6); Short(57)
#> 15                                                                                                       Absent(68); Present(100)
#> 16                                                      Irregular(56); Tending toward horizontal(112); Tending toward vertical(0)
#>    chisq_statistic chisq_pvalue chisq_significance
#> 1        0.5046947   0.96920308                 ns
#> 2        5.0473183   0.07839216                 ns
#> 3       25.8082829   0.00039996                 **
#> 4       24.1043807   0.00009999                 **
#> 5        3.7515039   0.36366363                 ns
#> 6       15.8517808   0.00859914                 **
#> 7        2.8705932   0.24817518                 ns
#> 8        9.0091683   0.38416158                 ns
#> 9        8.3226194   0.03959604                  *
#> 10       3.9554501   0.41075892                 ns
#> 11       7.2401831   0.11618838                 ns
#> 12       5.0840571   0.27517248                 ns
#> 13       0.6650546   0.80361964                 ns
#> 14       1.6140159   0.66543346                 ns
#> 15       0.3416413   0.57124288                 ns
#> 16       0.3043632   1.00000000                 ns