Skip to contents

Compute the following diversity indices and perform corresponding statistical tests to compare the phenotypic diversity for qualitative traits between entire collection (EC) and core set (CS).

  • Simpson's and related indices

    • Simpson's Index (\(d\)) (Simpson 1949; Peet 1974)

    • Simpson's Index of Diversity or Gini's Diversity Index or Gini-Simpson Index or Nei's Diversity Index or Nei's Variation Index (\(D\)) or Hurlbert’s probability of interspecific encounter (\(PIE\)) (Gini 1912, 1912; Greenberg 1956; Berger and Parker 1970; Hurlbert 1971; Nei 1973; Peet 1974)

    • Maximum Simpson's Index of Diversity or Maximum Nei's Diversity/Variation Index (\(D_{max}\)) (Hennink and Zeven 1990)

    • Simpson's Reciprocal Index or Hill's \(N_{2}\) (\(D_{R}\)) or Effective number of Species (\(ENS_{d}\)) (Williams 1964; Hill 1973)

    • Relative Simpson's Index of Diversity or Relative Nei's Diversity/Variation Index (\(D'\)) (Hennink and Zeven 1990)

    • Simpson’s evenness or equitability (\(D_{e}\))

  • Shannon-Weaver and related indices

    • Shannon or Shannon-Weaver or Shannon-Wiener Diversity Index or Shannon entropy (\(H\)) (Shannon and Weaver 1949; Peet 1974)

    • Maximum Shannon-Weaver Diversity Index (\(H_{max}\)) (Hennink and Zeven 1990)

    • Relative Shannon-Weaver Diversity Index or Shannon Equitability Index (\(H'\)) or Pielou's Evenness (\(J\)) (Pielou 1966; Hennink and Zeven 1990)

    • Effective number of species for the Shannon -Weaver Diversity Index (\(ENS_{H}\)) or Hill's \(N_{1}\) (Macarthur 1965; Hill 1973)

  • McIntosh's measures of diversity

    • McIntosh Diversity Index (\(D_{Mc}\)) (McIntosh 1967; Peet 1974)

    • McIntosh Evenness Index (\(E_{Mc}\)) (Pielou 1975)

Usage

diversity.evaluate.core(
  data,
  names,
  qualitative,
  selected,
  base = 2,
  R = 1000,
  na.omit = TRUE
)

Arguments

data

The data as a data frame object. The data frame should possess one row per individual and columns with the individual names and multiple trait/character data.

names

Name of column with the individual names as a character string.

qualitative

Name of columns with the qualitative traits as a character vector.

selected

Character vector with the names of individuals selected in core collection and present in the names column.

base

The logarithm base to be used for computation of Shannon-Weaver Diversity Index (\(I\)). Default is 2.

R

The number of bootstrap replicates. Default is 1000.

na.omit

logical. If TRUE, missing values (NA) are ignored and not included as a distinct factor level for computation. Default is TRUE.

Value

A list with three data frames as follows.

simpson

EC_No.Classes

The number of classes in the trait for EC.

CS_No.Classes

The number of classes in the trait for CS.

EC_d

The Simpson's Index (\(d\)) for EC.

EC_D

The Simpson's Index of Diversity (\(D\)) for EC.

EC_D.max

The Maximum Simpson's Index of Diversity (\(D_{max}\)) for EC.

EC_D.inv

The Simpson's Reciprocal Index (\(D_{R}\)) for EC.

EC_D.rel

The Relative Reciprocal Index (\(D'\)) for EC.

EC_D.e

The Shannon's evenness or equitability (\(D_{e}\)) for EC.

EC_d.V

The variance of \(d\) for EC according to (Simpson 1949) .

EC_d.boot.V

The bootstrap variance of \(d\) for EC.

CS_d

The Simpson's Index (\(d\)) for CS.

CS_D

The Simpson's Index of Diversity (\(D\)) for CS.

CS_D.max

The Maximum Simpson's Index of Diversity (\(D_{max}\)) for CS.

CS_D.inv

The Simpson's Reciprocal Index (\(D_{R}\)) for CS.

CS_D.rel

The Relative Reciprocal Index (\(D'\)) for CS.

CS_D.e

The Shannon's evenness or equitability (\(D_{e}\)) for CS.

CS_d.V

The variance of \(d\) for CS according to (Simpson 1949) .

CS_d.boot.V

The bootstrap variance of \(d\) for CS.

d.t.df

The degrees of freedom for t test.

d.t.stat

The t statistic.

d.t.pvalue

The p value for t test.

d.t.significance

The significance of t test for t-test

d.boot.z.df

The degrees of freedom for bootstrap z score.

d.boot.z.stat

The bootstrap z score.

d.boot.z.pvalue

The p value of z score.

d.boot.z.significance

The significance of z score.

shannon

EC_No.Classes

The number of classes in the trait for EC.

CS_No.Classes

The number of classes in the trait for CS.

EC_I

The Shannon-Weaver Diversity Index (\(I\)) for EC.

EC_I.max

The Maximum Shannon-Weaver Diversity Index (\(I_{max}\)) for EC.

EC_I.rel

The Relative Shannon-Weaver Diversity Index (\(I'\)) for EC.

EC_I.ens

The Effective Number of Species for Shannon-Weaver Diversity Index (\(ENS_{H}\)) for EC

EC_I.V

The variance of \(I\) for EC according to (Hutcheson 1970) .

EC_I.boot.V

The bootstrap variance of \(I\) for EC.

CS_I

The Shannon-Weaver Diversity Index (\(I\)) for CS.

CS_I.max

The Maximum Shannon-Weaver Diversity Index (\(I_{max}\)) for CS.

CS_I.rel

The Relative Shannon-Weaver Diversity Index (\(I'\)) for CS.

CS_I.ens

The Effective Number of Species for Shannon-Weaver Diversity Index (\(ENS_{H}\)) for CS.

CS_I.V

The variance of \(I\) for CS according to (Hutcheson 1970) .

CS_I.boot.V

The bootstrap variance of \(I\) for CS.

I.t.stat

The t statistic.

I.t.df

The degrees of freedom for t test.

I.t.pvalue

The p value for t test.

I.t.significance

The significance of t test for t-test

I.boot.z.df

The degrees of freedom for bootstrap z score.

I.boot.z.stat

The bootstrap z score.

I.boot.z.pvalue

The p value of z score.

I.boot.z.significance

The significance of z score.

mcintosh

CS_No.Classes

The number of classes in the trait for CS.

EC_D.Mc

The McIntosh Index (\(D_{Mc}\)) for EC.

CS_D.Mc

The McIntosh Index (\(D_{Mc}\)) for CS.

M.boot.z.stat

The bootstrap z score.

M.boot.z.df

The degrees of freedom for bootstrap z score.

M.boot.z.pvalue

The p value of z score.

M.boot.z.significance

The significance of z score.

Details

The diversity indices and the corresponding statistical tests implemented in diversity.evaluate.core are as follows.

Simpson's index (\(d\)) which estimates the probability that two accessions randomly selected will belong to the same phenotypic class of a trait, is computed as follows (Simpson 1949; Peet 1974) .

\[d = \sum_{i = 1}^{k}p_{i}^{2}\]

Where, \(p_{i}\) denotes the proportion/fraction/frequency of accessions in the \(i\)th phenotypic class for a trait and \(k\) is the number of phenotypic classes for the trait.

The value of \(d\) can range from 0 to 1 with 0 representing maximum diversity and 1, no diversity.

\(d\) is subtracted from 1 to give Simpson's index of diversity (\(D\)) (Greenberg 1956; Berger and Parker 1970; Hurlbert 1971; Peet 1974; Hennink and Zeven 1990) originally suggested by Gini (1912, 1912) and described in literature as Gini's diversity index or Gini-Simpson index. It is the same as Nei's diversity index or Nei's variation index (Nei 1973; Hennink and Zeven 1990) . Greater the value of \(D\), greater the diversity with a range from 0 to 1.

\[D = 1 - d\]

The maximum value of \(D\), \(D_{max}\) occurs when accessions are uniformly distributed across the phenotypic classes and is computed as follows (Hennink and Zeven 1990) .

\[D_{max} = 1 - \frac{1}{k}\]

Reciprocal of \(d\) gives the Simpson's reciprocal index (\(D_{R}\)) (Williams 1964; Hennink and Zeven 1990) and can range from 1 to \(k\). This was also described in Hill (1973) as \(N_{2}\) or as Effective number of Species (\(ENS_{d}\)).

\[D_{R} = \frac{1}{d}\]

Relative Simpson's index of diversity or Relative Nei's diversity/variation index (\(H'\)) (Hennink and Zeven 1990) is defined as follows (Peet 1974) .

\[D' = \frac{D}{D_{max}}\]

Simpson’s evenness or equitability (\(D_{e}\) is described as follows (Pielou 1966; Hill 1973) .

\[D_{e} = \frac{1}{d \cdot k}\]

Differences in Simpson's diversity index for qualitative traits of EC and CS can be tested by a t-test using the associated variance estimate described in Simpson (1949) (Lyons and Hutcheson 1978) .

The t statistic is computed as follows.

\[t = \frac{d_{EC} - d_{CS}}{\sqrt{V_{d_{EC}} + V_{d_{CS}}}}\]

Where, the variance of \(d\) (\(V_{d}\)) is,

\[V_{d} = \frac{4N(N-1)(N-2)\sum_{i=1}^{k}(p_{i})^{3} + 2N(N-1)\sum_{i=1}^{k}(p_{i})^{2} - 2N(N-1)(2N-3) \left( \sum_{i=1}^{k}(p_{i})^{2} \right)^{2}}{[N(N-1)]^{2}}\]

The associated degrees of freedom is computed as follows.

\[df = (k_{EC} - 1) + (k_{CS} - 1)\]

Where, \(k_{EC}\) and \(k_{CS}\) are the number of phenotypic classes in the trait for EC and CS respectively.

An index of information \(H\), was described by Shannon and Weaver (1949) as follows.

\[H = -\sum_{i=1}^{k}p_{i} \log_{2}(p_{i})\]

\(H\) is described as Shannon or Shannon-Weaver or Shannon-Wiener diversity index or Shannon entropy in literature (Shannon and Weaver 1949; Peet 1974) .

Alternatively, \(H\) is also computed using natural logarithm instead of logarithm to base 2.

\[H = -\sum_{i=1}^{k}p_{i} \ln(p_{i})\]

The maximum value of \(H\) (\(H_{max}\)) is \(\ln(k)\). This value occurs when each phenotypic class for a trait has the same proportion of accessions (Hennink and Zeven 1990) .

\[H_{max} = \log_{2}(k)\;\; \textrm{OR} \;\; H_{max} = \ln(k)\]

The relative Shannon-Weaver diversity index or Shannon equitability index (\(H'\)) or Pielou's Evenness (\(J\)) is the Shannon diversity index (\(I\)) divided by the maximum diversity (\(H_{max}\)) (Pielou 1966; Hennink and Zeven 1990) .

\[H' = \frac{H}{H_{max}}\]

(Macarthur 1965) described the Effective number of species for the Shannon index (\(ENS_{H}\)) as follows.

\[ ENS_{H} = e^{H}\]

Differences in Shannon-Weaver diversity index for qualitative traits of EC and CS can be tested by Hutcheson t-test (Hutcheson 1970) .

The Hutcheson t statistic is computed as follows.

\[t = \frac{H_{EC} - H_{CS}}{\sqrt{V_{H_{EC}} + V_{H_{CS}}}}\]

Where, the variance of \(H\) (\(V_{H}\)) is,

\[V_{H} = \frac{\sum_{i=1}^{k}n_{i}(\log_{2}{n_{i}})^{2} \frac{(\sum_{i=1}^{k}\log_{2}{n_{i}})^2}{N}}{N^{2}}\]

\[\textrm{OR}\]

\[V_{H} = \frac{\sum_{i=1}^{k}n_{i}(\ln{n_{i}})^{2} \frac{(\sum_{i=1}^{k}\ln{n_{i}})^2}{N}}{N^{2}}\]

The associated degrees of freedom is approximated as follows.

\[df = \frac{(V_{H_{EC}} + V_{H_{CS}})^{2}}{\frac{V_{H_{EC}}^{2}}{N_{EC}} + \frac{V_{H_{CS}}^{2}}{N_{CS}}}\]

McIntosh's Measure of Diversity

A similar index of diversity was described by McIntosh (1967) as follows (\(D_{Mc}\)) (Peet 1974) .

\[D_{Mc} = \frac{N - \sqrt{\sum_{i=1}^{k}n_{i}^2}}{N - \sqrt{N}}\]

Where, \(n_{i}\) denotes the number of accessions in the \(i\)th phenotypic class for a trait and \(N\) is the total number of accessions so that \(p_{i} = {n_{i}}/{N}\).

An additional measure of evenness was proposed by Pielou (1975) as follows.

\[E_{Mc} = \frac{N - \sqrt{\sum_{i=1}^{k}n_{i}^2}}{N - \frac{N}{\sqrt{S}}}\]

Testing for difference with bootstrapping

Bootstrap statistics are employed to test the difference between the Simpson, Shannon-Weaver and McIntosh indices for qualitative traits of EC and CS (Solow 1993) .

If \(I_{EC}\) and \(I_{CS}\) are the diversity indices with the original number of accessions, then random samples of the same size as the original are repeatedly generated (with replacement) \(R\) times and the corresponding diversity index is computed for each sample.

\[I_{EC}^{*} = \lbrace H_{EC_{1}}, H_{EC_{}}, \cdots, H_{EC_{R}} \rbrace\]

\[I_{CS}^{*} = \lbrace H_{CS_{1}}, H_{CS_{}}, \cdots, H_{CS_{R}} \rbrace\]

Then the bootstrap null sample \(I_{0}\) is computed as follows.

\[\Delta^{*} = I_{EC}^{*} - I_{CS}^{*}\]

\[I_{0} = \Delta^{*} - \overline{\Delta^{*}}\]

Where, \(\overline{\Delta^{*}}\) is the mean of \(\Delta^{*}\).

Now the original difference in diversity indices (\(\Delta_{0} = I_{EC} - I_{CS}\)) is tested against mean of bootstrap null sample (\(I_{0}\)) by a z test. The z score test statistic is computed as follows.

\[z = \frac{\Delta_{0} - \overline{H_{0}}}{\sqrt{V_{H_{0}}}}\]

Where, \(\overline{H_{0}}\) and \(V_{H_{0}}\) are the mean and variance of the bootstrap null sample \(H_{0}\).

The corresponding degrees of freedom is estimated as follows.

\[df = (k_{EC} - 1) + (k_{CS} - 1)\]

References

Berger WH, Parker FL (1970). “Diversity of planktonic foraminifera in deep-sea sediments.” Science, 168(3937), 1345–1347.

Gini C (1912). Variabilita e Mutabilita. Contributo allo Studio delle Distribuzioni e delle Relazioni Statistiche. [Fasc. I.]. Tipogr. di P. Cuppini, Bologna.

Gini C (1912). “Variabilita e mutabilita.” In Pizetti E, Salvemini T (eds.), Memorie di Metodologica Statistica. Liberia Eredi Virgilio Veschi, Roma, Italy.

Greenberg JH (1956). “The measurement of linguistic diversity.” Language, 32(1), 109.

Hennink S, Zeven AC (1990). “The interpretation of Nei and Shannon-Weaver within population variation indices.” Euphytica, 51(3), 235–240.

Hill MO (1973). “Diversity and evenness: A unifying notation and its consequences.” Ecology, 54(2), 427–432.

Hurlbert SH (1971). “The nonconcept of species diversity: a critique and alternative parameters.” Ecology, 52(4), 577–586.

Hutcheson K (1970). “A test for comparing diversities based on the Shannon formula.” Journal of Theoretical Biology, 29(1), 151–154.

Lyons NI, Hutcheson K (1978). “C20. Comparing diversities: Gini's index.” Journal of Statistical Computation and Simulation, 8(1), 75–78.

Macarthur RH (1965). “Patterns of species diversity.” Biological Reviews, 40(4), 510–533.

McIntosh RP (1967). “An index of diversity and the relation of certain concepts to diversity.” Ecology, 48(3), 392–404.

Nei M (1973). “Analysis of gene diversity in subdivided populations.” Proceedings of the National Academy of Sciences, 70(12), 3321–3323.

Peet RK (1974). “The measurement of species diversity.” Annual Review of Ecology and Systematics, 5(1), 285–307.

Pielou EC (1966). “The measurement of diversity in different types of biological collections.” Journal of Theoretical Biology, 13, 131–144.

Pielou EC (1975). Ecological diversity. New York : Wiley. ISBN 978-0-471-68925-6.

Shannon CE, Weaver W (1949). The Mathematical Theory of Communication, number v. 2 in The Mathematical Theory of Communication. University of Illinois Press.

Simpson EH (1949). “Measurement of diversity.” Nature, 163(4148), 688–688.

Solow AR (1993). “A simple test for change in community structure.” The Journal of Animal Ecology, 62(1), 191.

Williams CB (1964). Patterns in the Balance of Nature and Related Problems in Quantitative Ecology. Academic Press.

See also

Examples


data("cassava_CC")
data("cassava_EC")

ec <- cbind(genotypes = rownames(cassava_EC), cassava_EC)
ec$genotypes <- as.character(ec$genotypes)
rownames(ec) <- NULL

core <- rownames(cassava_CC)

quant <- c("NMSR", "TTRN", "TFWSR", "TTRW", "TFWSS", "TTSW", "TTPW", "AVPW",
           "ARSR", "SRDM")
qual <- c("CUAL", "LNGS", "PTLC", "DSTA", "LFRT", "LBTEF", "CBTR", "NMLB",
          "ANGB", "CUAL9M", "LVC9M", "TNPR9M", "PL9M", "STRP", "STRC",
          "PSTR")

ec[, qual] <- lapply(ec[, qual],
                     function(x) factor(as.factor(x)))

# \donttest{
diversity.evaluate.core(data = ec, names = "genotypes",
                        qualitative = qual, selected = core)
#> $simpson
#>     Trait EC_No.Classes CS_No.Classes              EC_d              EC_D
#> 1    CUAL             5             4 0.379231526565524 0.620768473434476
#> 2    LNGS             3             3 0.422400150078142 0.577599849921858
#> 3    PTLC             5             5 0.477398006104682 0.522601993895318
#> 4    DSTA             5             5 0.351400071089646 0.648599928910354
#> 5    LFRT             5             4 0.448935347916114 0.551064652083886
#> 6   LBTEF             6             6 0.223971174841036 0.776028825158964
#> 7    CBTR             3             3  0.51874284166756  0.48125715833244
#> 8    NMLB            10             9 0.206703725435988 0.793296274564012
#> 9    ANGB             4             4 0.350516387291879  0.64948361270812
#> 10 CUAL9M             5             5 0.309073521363567 0.690926478636433
#> 11  LVC9M             5             5 0.425299451029954 0.574700548970046
#> 12 TNPR9M             5             5 0.247165582455527 0.752834417544473
#> 13   PL9M             3             2 0.498635332682619 0.501364667317381
#> 14   STRP             4             4 0.322189843207836 0.677810156792164
#> 15   STRC             2             2 0.510325630074306 0.489674369925694
#> 16   PSTR             3             2 0.555306757465823 0.444693242534177
#>             EC_D.max         EC_D.inv          EC_D.rel            EC_D.e
#> 1                0.8 2.63691156971154 0.775960591793095  0.32218131003573
#> 2  0.666666666666667 2.36742340128195 0.866399774882787 0.577100796301158
#> 3                0.8 2.09468826265002 0.653252492369147 0.382700415107987
#> 4                0.8 2.84575924216273 0.810749911137942 0.308356493865177
#> 5                0.8 2.22749223165839 0.688830815104857 0.362933821365038
#> 6  0.833333333333333 4.46486026922774 0.931234590190757  0.21476865454389
#> 7  0.666666666666667 1.92773744459853  0.72188573749866 0.692630390139725
#> 8                0.9 4.83784217188518 0.881440305071124 0.126056308602935
#> 9               0.75 2.85293366089411 0.865978150277494 0.384921182164377
#> 10               0.8 3.23547612745411 0.863658098295541 0.289466399369593
#> 11               0.8 2.35128448338761 0.718375686212558 0.348007323741784
#> 12               0.8 4.04587074812462 0.941043021930592 0.265662668096846
#> 13 0.666666666666667   2.005473608579 0.752047000976072 0.664852062904388
#> 14              0.75 3.10376016215672 0.903746875722886 0.368834838921803
#> 15               0.5  1.9595331707216 0.979348739851389  1.02108672764693
#> 16 0.666666666666667 1.80080646697613 0.667039863801265 0.749580388120504
#>                  EC_d.V          EC_d.boot.V              CS_d
#> 1   6.2401326584027e-05 6.68750117708326e-05 0.378472222222222
#> 2  2.66303075243519e-05 2.65811066561584e-05 0.387755102040816
#> 3  6.43256463380354e-05 6.50509760875086e-05 0.421343537414966
#> 4  4.49202770089222e-05 4.79613335074667e-05 0.303500566893424
#> 5  3.64033438958825e-05 3.49448546349972e-05 0.426587301587302
#> 6  1.01110395238633e-05 9.78006680330427e-06 0.200538548752834
#> 7  4.63756492257553e-05 4.76343377864573e-05 0.487244897959184
#> 8  1.57355754103247e-05 1.55372775046521e-05 0.198058390022676
#> 9  3.10366375721298e-05 3.19525542264521e-05 0.342120181405896
#> 10 1.34905804296262e-05 1.35415192137175e-05 0.288052721088435
#> 11 4.98247003940663e-05 4.74038435990513e-05 0.388676303854875
#> 12 2.56650302792209e-05   2.636407723636e-05   0.2218679138322
#> 13 3.79031161219323e-06 3.95703022757023e-06 0.500283446712018
#> 14 9.34647324671549e-06 9.00340235241142e-06 0.311862244897959
#> 15 1.21791747807758e-05 1.11330159341353e-05 0.518140589569161
#> 16  6.1357244865428e-05 5.80204406696967e-05 0.555555555555556
#>                 CS_D          CS_D.max         CS_D.inv          CS_D.rel
#> 1  0.621527777777778              0.75 2.64220183486239 0.828703703703704
#> 2  0.612244897959184 0.666666666666667 2.57894736842105 0.918367346938775
#> 3  0.578656462585034               0.8 2.37336024217962 0.723320578231292
#> 4  0.696499433106576               0.8 3.29488676161569  0.87062429138322
#> 5  0.573412698412698              0.75 2.34418604651163 0.764550264550265
#> 6  0.799461451247165 0.833333333333333 4.98657243816254 0.959353741496599
#> 7  0.512755102040816 0.666666666666667 2.05235602094241 0.769132653061224
#> 8  0.801941609977324 0.888888888888889 5.04901610017889  0.90218431122449
#> 9  0.657879818594104              0.75 2.92294946147473 0.877173091458806
#> 10 0.711947278911565               0.8 3.47158671586716 0.889934098639456
#> 11 0.611323696145125               0.8 2.57283500455789 0.764154620181406
#> 12   0.7781320861678               0.8 4.50718620249122 0.972665107709751
#> 13 0.499716553287982               0.5 1.99886685552408 0.999433106575964
#> 14 0.688137755102041              0.75 3.20654396728016 0.917517006802721
#> 15 0.481859410430839               0.5 1.92997811816193 0.963718820861678
#> 16 0.444444444444444               0.5              1.8 0.888888888888889
#>               CS_D.e               CS_d.V          CS_d.boot.V d.t.df
#> 1  0.402234636871508 0.000664974207441761 0.000711254556902111      7
#> 2  0.544444444444444 0.000253494320337725 0.000240257761836584      4
#> 3  0.345628214548126  0.00106773305088108  0.00104798654736355      8
#> 4  0.287150269610337 0.000464316667250201 0.000464735179959108      8
#> 5   0.43598615916955 0.000434218289438062 0.000428477928488368      7
#> 6   0.20847367488034 6.05627470284696e-05  6.0452161171105e-05     10
#> 7  0.650082918739635 0.000257136051752956 0.000270835513259535      4
#> 8  0.138552619952284 0.000216132859442877 0.000204518681279425     17
#> 9  0.380008616975442 0.000360254817691854 0.000352890437968318      6
#> 10 0.280919677515676 0.000144703074224106 0.000152287794801069      8
#> 11 0.327158919670801 0.000503057233986995 0.000487240519916225      8
#> 12 0.257025771787633 0.000134121919501297 0.000143697014401447      8
#> 13  1.00056721497448 2.11737525161229e-05 1.40416164854234e-05      3
#> 14 0.363299351251158 8.69838142388246e-05 8.63936473121947e-05      6
#> 15  1.03764705882353  0.00022467592663519 0.000201952305242796      2
#> 16             1.125 0.000601970661850899 0.000601207763998725      3
#>                d.t.stat         d.t.pvalue d.t.significance d.boot.z.df
#> 1      0.02815376878219  0.978325351754391               ns           7
#> 2      2.06997700767549   0.10723294813912               ns           4
#> 3      1.66600295615057  0.134274950280504               ns           8
#> 4      2.12261420536943 0.0665538249488766               ns           8
#> 5       1.0301574783912  0.337209790540494               ns           7
#> 6      2.78735177789005 0.0192068432217533                *          10
#> 7      1.80798358527422  0.144886591272101               ns           4
#> 8     0.567755084270463  0.577623407084813               ns          17
#> 9     0.424456215383704  0.686031514328123               ns           6
#> 10      1.6713011659847  0.133206249679844               ns           8
#> 11     1.55754090990284  0.157957033254601               ns           8
#> 12     2.00128917457502 0.0803555866511265               ns           8
#> 13   -0.329859967245677  0.763196306139146               ns           3
#> 14     1.05224751693921  0.333206278005286               ns           6
#> 15   -0.507791421657648  0.662061546648583               ns           2
#> 16 -0.00966012858117729   0.99289893656246               ns           3
#>          d.boot.z.stat    d.boot.z.pvalue d.boot.z.significance
#> 1   0.0275212882188481  0.978812135373164                    ns
#> 2     2.14817887304654  0.098182032704849                    ns
#> 3     1.68166677243456   0.13113810025065                    ns
#> 4     2.09891549611266  0.069053916740305                    ns
#> 5     1.03166697933988  0.336549450852584                    ns
#> 6     2.82533970685804 0.0179951522790031                     *
#> 7     1.73767783492423  0.157264335515885                    ns
#> 8    0.581591476650998  0.568474385095018                    ns
#> 9    0.426083455919101  0.684908883579996                    ns
#> 10     1.6305427679191  0.141633454275904                    ns
#> 11    1.56637783409065  0.155893973673908                    ns
#> 12     1.9863174533999 0.0822405673333897                    ns
#> 13    0.38950879498154  0.722904437177963                    ns
#> 14    1.05400674082793  0.332462522918394                    ns
#> 15   0.542596692443321  0.641786855685194                    ns
#> 16 0.00948924181640027  0.993024548633537                    ns
#> 
#> $shannon
#>     Trait EC_No.Classes CS_No.Classes              EC_I          EC_I.max
#> 1    CUAL             5             4  1.60118025300384   1.6094379124341
#> 2    LNGS             3             3  1.34638092645118  1.09861228866811
#> 3    PTLC             5             5  1.29757991678528   1.6094379124341
#> 4    DSTA             5             5  1.75217791456181   1.6094379124341
#> 5    LFRT             5             4  1.32020430332539   1.6094379124341
#> 6   LBTEF             6             6  2.26107917725546  1.79175946922805
#> 7    CBTR             3             3  1.04940762729587  1.09861228866811
#> 8    NMLB            10             9  2.46043656290491  2.30258509299405
#> 9    ANGB             4             4  1.63181278826841  1.38629436111989
#> 10 CUAL9M             5             5  1.81895733334165   1.6094379124341
#> 11  LVC9M             5             5  1.45781261313429   1.6094379124341
#> 12 TNPR9M             5             5  2.15936383275215   1.6094379124341
#> 13   PL9M             3             2  1.02393231699601  1.09861228866811
#> 14   STRP             4             4  1.70471635517281  1.38629436111989
#> 15   STRC             2             2 0.985051563686417 0.693147180559945
#> 16   PSTR             3             2 0.932902628052214  1.09861228866811
#>             EC_I.rel         EC_I.ens               EC_I.V          EC_I.boot.V
#> 1  0.994869227718287 4.95888170692978 0.000495550546246209 0.000483712338849248
#> 2   1.22552873323805 3.84349045523356  0.00026683714279372 0.000270031896212135
#> 3  0.806231732681647 3.66042740085471  0.00076741293709653 0.000765753466729798
#> 4   1.08868934988106 5.76714936682217 0.000644551217715297 0.000699114782445066
#> 5     0.820289054412 3.74418624882682   0.0005480962422548 0.000517967395505657
#> 6   1.26193231630002 9.59343660098374 0.000259759685726472 0.000270960747240493
#> 7  0.955211987086096 2.85595882482654 0.000312696844542415 0.000303746752454349
#> 8   1.06855402234261  11.709922542064 0.000496178249738945 0.000505419831711688
#> 9   1.17710410864701 5.11313535399957 0.000306008701151613 0.000308011811117831
#> 10  1.13018173567856 6.16542661257166 0.000397228605602063 0.000382066367282386
#> 11  0.90578990458197 4.29655102280072 0.000698631874341118  0.00066531132699232
#> 12  1.34168818571345 8.66562311895419 0.000264448274894998 0.000279996361013181
#> 13 0.932023360340673 2.78412131411744 0.000100041535943681 0.000101885631821939
#> 14  1.22969291586506 5.49982544890899  0.00021912035039574 0.000213669110846319
#> 15  1.42112900595031 2.67794996583331 2.53468656861686e-05 2.75749116254995e-05
#> 16 0.849164566676391 2.54187660232952 0.000206905486943159 0.000215626202139427
#>                 CS_I          CS_I.max          CS_I.rel         CS_I.ens
#> 1   1.60715392433211  1.38629436111989  1.15931649828959 4.98859309107096
#> 2   1.44881563572518  1.09861228866811  1.31876882378736 4.25806842343285
#> 3   1.60685189446012   1.6094379124341 0.998393216691366 4.98708661445017
#> 4   1.94652505102181   1.6094379124341  1.20944401519528  7.0043056374023
#> 5   1.39390699808299  1.38629436111989  1.00549135679738   4.030566747009
#> 6    2.3831722498942  1.79175946922805    1.330073757568  10.839233139215
#> 7   1.12338192727968  1.09861228866811  1.02254629669362 3.07523686413742
#> 8   2.56080478714959  2.19722457733622  1.16547248449867 12.9462320853624
#> 9   1.69700114892879  1.38629436111989  1.22412757097122 5.45755642804107
#> 10  1.92688046691671   1.6094379124341  1.19723814881589 6.86805167421241
#> 11  1.59702066650884   1.6094379124341 0.992284731315619 4.93829764981337
#> 12  2.24730159981114   1.6094379124341  1.39632699245436 9.46216863896461
#> 13 0.999591034189098 0.693147180559945  1.44210502794168 2.71717037141627
#> 14  1.74920954558179  1.38629436111989  1.26178796844324 5.75005572221205
#> 15  0.97366806454962 0.693147180559945  1.40470608819769 2.64763837799998
#> 16  0.91829583405449 0.693147180559945  1.32482084585941 2.50501778435487
#>                  CS_I.V          CS_I.boot.V           I.t.stat
#> 1   0.00466900952090494  0.00480057355817968 -0.083123660050637
#> 2   0.00183098114336171  0.00187582523489003  -2.23647066374941
#> 3   0.00915269666156106  0.00931692085852008  -3.10514822627186
#> 4   0.00501290672204481  0.00517355690951426  -2.58385107753543
#> 5   0.00481441616742965  0.00488793329864121  -1.00646624014807
#> 6   0.00172264312694065  0.00188540992637979  -2.74217439229004
#> 7   0.00290287113955504  0.00298363121894339  -1.30452382793487
#> 8   0.00546163553548553  0.00546757466250246   -1.3003275918761
#> 9   0.00354899161566695  0.00363110411244662  -1.04992396937323
#> 10  0.00380714696318465  0.00434151206919941  -1.66442333074281
#> 11  0.00676974620846264  0.00669096782843366  -1.61083557606938
#> 12  0.00129552549169971  0.00131598463869385  -2.22646968440541
#> 13 7.02197242512667e-06 4.25209205129464e-05   2.35246259571922
#> 14   0.0020863467552808  0.00212048454008538 -0.926646485957522
#> 15 0.000443961107972778 0.000440238137447901   0.52546865211132
#> 16  0.00132275132275134  0.00145971081458055  0.373471875118422
#>              I.t.df          I.t.pvalue I.t.significance I.boot.z.df
#> 1  205.323489838581   0.933834195011031               ns           7
#> 2  220.068588438007  0.0263241034578902                *           4
#> 3  197.214845421711 0.00218182272218803               **           8
#> 4  213.627424864319  0.0104369229742795                *           8
#> 5   208.16009186019   0.315359849464886               ns           7
#> 6  221.982338302534 0.00660128212793374               **          10
#> 7   205.90491319267   0.193511253079244               ns           4
#> 8  199.746997945695   0.194987041994507               ns          17
#> 9  198.073409342984   0.295032389672131               ns           6
#> 10 204.664065671499   0.097558069731458               ns           8
#> 11 204.247107694347   0.108759859193219               ns           8
#> 12 242.577447747539  0.0269016983557465                *           8
#> 13 1837.93308927511  0.0187545059227561                *           3
#> 14 204.916304701679     0.3552001943646               ns           6
#> 15 187.669671190779   0.599877733009115               ns           2
#> 16 224.120762900574   0.709150296735105               ns           3
#>         I.boot.z.stat    I.boot.z.pvalue I.boot.z.significance
#> 1  0.0816151261682393  0.937237366880844                    ns
#> 2    2.20804536110578 0.0918257677192241                    ns
#> 3    3.08699009808722 0.0149576074571947                     *
#> 4    2.53734329919595 0.0348546381941696                     *
#> 5   0.989361829502098  0.355443761348068                    ns
#> 6    2.63447567425041 0.0249696070188221                     *
#> 7    1.27767390552231  0.270478762219057                    ns
#> 8    1.30252773052818  0.210106229408213                    ns
#> 9    1.03779040230213  0.339369867309314                    ns
#> 10   1.57822986458477  0.153165342145742                    ns
#> 11   1.60829881122977  0.146436407724478                    ns
#> 12   2.18775796377732 0.0601308095874048                    ns
#> 13   2.02010593122144  0.136642216305489                    ns
#> 14  0.920412488631991   0.39285907429174                    ns
#> 15  0.529555857008772  0.649326086935845                    ns
#> 16  0.358406267034263  0.743776008270476                    ns
#> 
#> $mcintosh
#>     Trait EC_No.Classes CS_No.Classes           EC_D.Mc           EC_E.Mc
#> 1    CUAL             5             4 0.393778012434178 0.480227786771547
#> 2    LNGS             3             3 0.358820738546382 0.525115218256116
#> 3    PTLC             5             5 0.316779500161785 0.386325070099539
#> 4    DSTA             5             5 0.417380876241608 0.509012408283666
#> 5    LFRT             5             4 0.338215427137732 0.412467026846746
#> 6   LBTEF             6             6 0.539900644138108 0.632092884556734
#> 7    CBTR             3             3 0.286749615427161 0.419642932289509
#> 8    NMLB            10             9 0.558974562677424 0.605947984498653
#> 9    ANGB             4             4 0.418145333938704 0.543941007506402
#> 10 CUAL9M             5             5 0.455147453452433 0.555070235829135
#> 11  LVC9M             5             5 0.356538441668976 0.434812664331503
#> 12 TNPR9M             5             5 0.515402077468806  0.62855312166947
#> 13   PL9M             3             2 0.301198604544138 0.440788265484237
#> 14   STRP             4             4 0.443181993303366 0.576509745249164
#> 15   STRC             2             2 0.292763414762376 0.571258413744031
#> 16   PSTR             3             2 0.261175379595452 0.382216387533749
#>              CS_D.Mc           CS_E.Mc     M.boot.z.stat M.boot.z.df
#> 1  0.416968887221027 0.513065385542589  0.99460293625151           7
#> 2   0.40884307929476 0.565950226384141  3.46783277479897           4
#> 3  0.380225207834671 0.438612745225263   2.2738192752375           8
#> 4  0.486635921075666 0.561363930823417  3.25064028587058           8
#> 5  0.375861861492538 0.462484652422527  2.15010573810129           7
#> 6  0.598348264293068 0.662621632177028  5.92988531160087          10
#> 7  0.327215963767637 0.452956056123639  2.96146258220075           4
#> 8  0.601358283540837 0.624332795289677  2.43902555318006          17
#> 9  0.449791785009108 0.553452793870588  1.80927337245031           6
#> 10 0.502026774187731 0.579118209592271  3.88926220676601           8
#> 11 0.408042032313971 0.470701132572847  2.52849788059365           8
#> 12 0.573194332783244 0.661214287399217  4.19030542335567           8
#> 13 0.317162433070916 0.585385640236862  4.50532682556703           3
#> 14 0.478468357680793  0.58873829661372  3.85325830114453           6
#> 15 0.303603702882552 0.560360337349431 0.911854542963119           2
#> 16 0.275932675604997  0.50928801500014 0.819045753756123           3
#>         M.boot.z.pvalue M.boot.z.significance
#> 1     0.353059203135146                    ns
#> 2    0.0256341480264864                     *
#> 3     0.052576089898046                    ns
#> 4    0.0116898700454197                     *
#> 5    0.0686029150382776                    ns
#> 6  0.000145105134520755                    **
#> 7    0.0414941513850029                     *
#> 8    0.0259867089753573                     *
#> 9     0.120396110387685                    ns
#> 10  0.00461403041701568                    **
#> 11   0.0353379983338816                     *
#> 12  0.00303649104150158                    **
#> 13   0.0204253515117484                     *
#> 14  0.00842801033696131                    **
#> 15    0.458100293127608                    ns
#> 16    0.472768376779912                    ns
#> 
# }