Plot Quantile-Quantile (QQ) plots (Wilk and Gnanadesikan 1968) to graphically compare the probability distributions of quantitative traits between entire collection (EC) and core set (CS).
qq.evaluate.core(
data,
names,
quantitative,
selected,
annotate = c("none", "kl", "ks", "ad")
)
The data as a data frame object. The data frame should possess one row per individual and columns with the individual names and multiple trait/character data.
Name of column with the individual names as a character string.
Name of columns with the quantitative traits as a character vector.
Character vector with the names of individuals selected in
core collection and present in the names
column.
Adds the divergence/distance value between probability
distributions of CS and EC as an annotation to the QQ plot. Either
"none"
(no annotation (Default)) or "kl"
(Kullback-Leibler
divergence) or "ks"
(Kolmogorov-Smirnov distance) or "ad"
(Anderson-Darling distance).
A list with the ggplot
objects of QQ plots of CS vs EC for
each trait specified as quantitative
.
Wilk MB, Gnanadesikan R (1968). “Probability plotting methods for the analysis for the analysis of data.” Biometrika, 55(1), 1–17.
data("cassava_CC")
data("cassava_EC")
ec <- cbind(genotypes = rownames(cassava_EC), cassava_EC)
ec$genotypes <- as.character(ec$genotypes)
rownames(ec) <- NULL
core <- rownames(cassava_CC)
quant <- c("NMSR", "TTRN", "TFWSR", "TTRW", "TFWSS", "TTSW", "TTPW", "AVPW",
"ARSR", "SRDM")
qual <- c("CUAL", "LNGS", "PTLC", "DSTA", "LFRT", "LBTEF", "CBTR", "NMLB",
"ANGB", "CUAL9M", "LVC9M", "TNPR9M", "PL9M", "STRP", "STRC",
"PSTR")
ec[, qual] <- lapply(ec[, qual],
function(x) factor(as.factor(x)))
qq.evaluate.core(data = ec, names = "genotypes",
quantitative = quant, selected = core)
#> $NMSR
#>
#> $TTRN
#>
#> $TFWSR
#>
#> $TTRW
#>
#> $TFWSS
#>
#> $TTSW
#>
#> $TTPW
#>
#> $AVPW
#>
#> $ARSR
#>
#> $SRDM
#>
qq.evaluate.core(data = ec, names = "genotypes",
quantitative = quant, selected = core, annotate = "kl")
#> $NMSR
#>
#> $TTRN
#>
#> $TFWSR
#>
#> $TTRW
#>
#> $TFWSS
#>
#> $TTSW
#>
#> $TTPW
#>
#> $AVPW
#>
#> $ARSR
#>
#> $SRDM
#>
qq.evaluate.core(data = ec, names = "genotypes",
quantitative = quant, selected = core, annotate = "ks")
#> Warning: p-value will be approximate in the presence of ties
#> Warning: p-value will be approximate in the presence of ties
#> Warning: p-value will be approximate in the presence of ties
#> Warning: p-value will be approximate in the presence of ties
#> Warning: p-value will be approximate in the presence of ties
#> Warning: p-value will be approximate in the presence of ties
#> Warning: p-value will be approximate in the presence of ties
#> Warning: p-value will be approximate in the presence of ties
#> Warning: p-value will be approximate in the presence of ties
#> Warning: p-value will be approximate in the presence of ties
#> $NMSR
#>
#> $TTRN
#>
#> $TFWSR
#>
#> $TTRW
#>
#> $TFWSS
#>
#> $TTSW
#>
#> $TTPW
#>
#> $AVPW
#>
#> $ARSR
#>
#> $SRDM
#>
qq.evaluate.core(data = ec, names = "genotypes",
quantitative = quant, selected = core, annotate = "ad")
#> $NMSR
#>
#> $TTRN
#>
#> $TFWSR
#>
#> $TTRW
#>
#> $TFWSS
#>
#> $TTSW
#>
#> $TTPW
#>
#> $AVPW
#>
#> $ARSR
#>
#> $SRDM
#>