Skip to contents

Test difference between means of entire collection (EC) and core set (CS) for quantitative traits by Student's t test (in particular it's adaptation for comparison of groups with unequal variances known as Welch's two sample t-test) (Student 1908; Welch 1947) .

Usage

ttest.evaluate.core(data, names, quantitative, selected)

Arguments

data

The data as a data frame object. The data frame should possess one row per individual and columns with the individual names and multiple trait/character data.

names

Name of column with the individual names as a character string.

quantitative

Name of columns with the quantitative traits as a character vector.

selected

Character vector with the names of individuals selected in core collection and present in the names column.

Value

Trait

The quantitative trait.

Count

The accession count (excluding missing data).

Df

The degrees of freedom for the test.

EC_Min

The minimum value of the trait in EC.

EC_Max

The maximum value of the trait in EC.

EC_Mean

The mean value of the trait in EC.

EC_SE

The standard error of the trait in EC.

CS_Min

The minimum value of the trait in CS.

CS_Max

The maximum value of the trait in CS.

CS_Mean

The mean value of the trait in CS.

CS_SE

The standard error of the trait in CS.

ttest_pvalue

The p value of the Student's t test for equality of means of EC and CS.

ttest_significance

The significance of the Student's t test for equality of means of EC and CS.

References

Student (1908). “The probable error of a mean.” Biometrika, 6(1), 1–25.

Welch BL (1947). “The generalization of 'student's' problem when several different population varlances are involved.” Biometrika, 34(1-2), 28–35.

See also

Examples


data("cassava_CC")
data("cassava_EC")

ec <- cbind(genotypes = rownames(cassava_EC), cassava_EC)
ec$genotypes <- as.character(ec$genotypes)
rownames(ec) <- NULL

core <- rownames(cassava_CC)

quant <- c("NMSR", "TTRN", "TFWSR", "TTRW", "TFWSS", "TTSW", "TTPW", "AVPW",
           "ARSR", "SRDM")
qual <- c("CUAL", "LNGS", "PTLC", "DSTA", "LFRT", "LBTEF", "CBTR", "NMLB",
          "ANGB", "CUAL9M", "LVC9M", "TNPR9M", "PL9M", "STRP", "STRC",
          "PSTR")

ec[, qual] <- lapply(ec[, qual],
                     function(x) factor(as.factor(x)))

ttest.evaluate.core(data = ec, names = "genotypes",
                    quantitative = quant, selected = core)
#>         Trait Count       Df EC_Min EC_Max   EC_Mean      EC_SE CS_Min CS_Max
#> df...1   NMSR  1684 197.5347   1.00  55.00 11.722090 0.18731651   1.00  55.00
#> df...2   TTRN  1684 191.2705   0.25  13.75  3.853909 0.04656232   0.25  13.75
#> df...3  TFWSR  1684 185.9321   0.00  40.00  5.428979 0.11045567   0.20  38.00
#> df...4   TTRW  1684 178.3429   0.00  20.20  1.897948 0.04037796   0.10  20.20
#> df...5  TFWSS  1684 189.6987   0.20  42.00  6.943052 0.14359496   0.20  42.00
#> df...6   TTSW  1684 181.2810   0.04  22.00  2.387502 0.04878843   0.10  22.00
#> df...7   TTPW  1684 187.6470   0.40  80.00 12.372031 0.23851356   0.40  80.00
#> df...8   AVPW  1684 179.8673   0.20  33.00  4.285450 0.08195995   0.20  33.00
#> df...9   ARSR  1684 213.3477   0.00  18.00  1.858076 0.05493488   0.00   8.00
#> df...10  SRDM  1684 216.2246   0.50  48.90 37.771021 0.12264395  21.90  48.10
#>           CS_Mean     CS_SE ttest_pvalue ttest_significance
#> df...1  10.892857 0.6314310  0.209505833                 ns
#> df...2   3.930655 0.1754066  0.672855738                 ns
#> df...3   6.348214 0.4696134  0.058266745                 ns
#> df...4   2.617817 0.2207393  0.001585008                 **
#> df...5   7.748214 0.5588314  0.164507433                 ns
#> df...6   3.069087 0.2381436  0.005599998                 **
#> df...7  14.096429 0.9720528  0.086559633                 ns
#> df...8   5.686905 0.4210897  0.001302429                 **
#> df...9   1.702381 0.1516377  0.335457319                 ns
#> df...10 37.730357 0.3289992  0.907907091                 ns