Compare the medians of quantitative traits between entire collection (EC) and core set (CS) by Wilcoxon rank sum test or Mann-Whitney-Wilcoxon test or Mann-Whitney U test (Wilcoxon 1945; Mann and Whitney 1947) .
Arguments
- data
The data as a data frame object. The data frame should possess one row per individual and columns with the individual names and multiple trait/character data.
- names
Name of column with the individual names as a character string.
- quantitative
Name of columns with the quantitative traits as a character vector.
- selected
Character vector with the names of individuals selected in core collection and present in the
names
column.
Value
- Trait
The quantitative trait.
- EC_Med
The median value of the trait in EC.
- CS_Med
The median value of the trait in CS.
- Wilcox_pvalue
The p value of the Wilcoxon test for equality of medians of EC and CS.
- Wilcox_significance
The significance of the Wilcoxon test for equality of medians of EC and CS.
References
Mann HB, Whitney DR (1947).
“On a test of whether one of two random variables is stochastically larger than the other.”
The Annals of Mathematical Statistics, 18(1), 50–60.
Wilcoxon F (1945).
“Individual comparisons by ranking methods.”
Biometrics Bulletin, 1(6), 80.
Examples
data("cassava_CC")
data("cassava_EC")
ec <- cbind(genotypes = rownames(cassava_EC), cassava_EC)
ec$genotypes <- as.character(ec$genotypes)
rownames(ec) <- NULL
core <- rownames(cassava_CC)
quant <- c("NMSR", "TTRN", "TFWSR", "TTRW", "TFWSS", "TTSW", "TTPW", "AVPW",
"ARSR", "SRDM")
qual <- c("CUAL", "LNGS", "PTLC", "DSTA", "LFRT", "LBTEF", "CBTR", "NMLB",
"ANGB", "CUAL9M", "LVC9M", "TNPR9M", "PL9M", "STRP", "STRC",
"PSTR")
ec[, qual] <- lapply(ec[, qual],
function(x) factor(as.factor(x)))
wilcox.evaluate.core(data = ec, names = "genotypes",
quantitative = quant, selected = core)
#> Trait EC_Med CS_Med Wilcox_pvalue Wilcox_significance
#> 1 NMSR 10.000000 9.000000 0.07142419 ns
#> 2 TTRN 3.600000 3.500000 0.88120694 ns
#> 3 TFWSR 4.200000 4.300000 0.36146710 ns
#> 4 TTRW 1.445000 1.580000 0.05166795 ns
#> 5 TFWSS 5.400000 5.400000 0.59705438 ns
#> 6 TTSW 1.933333 2.058333 0.06454022 ns
#> 7 TTPW 10.000000 10.400000 0.41477324 ns
#> 8 AVPW 3.400000 3.600000 0.04066290 *
#> 9 ARSR 1.000000 1.000000 0.54494436 ns
#> 10 SRDM 38.500000 38.150000 0.38825006 ns