Compare Diversity Measures
Arguments
- x
A factor vector of categories (e.g., species, traits). The frequency of each level is treated as the abundance of that category.
- group
A factor vector indicating the group of each observation. Must have the same length as
x.- R
Integer specifying the number of permutations. Default is 1000.
- base
The logarithm base to be used for computation of shannon family of diversity indices. Default is
exp(1).- na.omit
logical. If
TRUE, missing values (NA) are ignored and not included as a distinct factor level for computation. Default isTRUE.- p.adjust.method
(perm.test.pairwise only) Method for adjusting p-values for multiple comparisons. Options include
"bonferroni"and"holm". Default is"bonferroni".- ci.conf
Confidence level of the bootstrap interval. Default is 0.95.
- ci.type
A vector of character strings representing the type of intervals required. The options are
c("perc", "bca").- q
The order of the parametric index.
- parallel
The type of parallel operation to be used (if any). If missing, the default is taken from the option
"boot.parallel"(and if that is not set,"no").- ncpus
integer: number of processes to be used in parallel operation: typically one would chose this to the number of available CPUs.
- cl
An optional parallel or snow cluster for use if
parallel = "snow". If not supplied, a cluster on the local machine is created for the duration of thebootcall.
Examples
library(EvaluateCore)
pdata <- cassava_CC
qual <- c("CUAL", "LNGS", "PTLC", "DSTA", "LFRT", "LBTEF", "CBTR", "NMLB",
"ANGB", "CUAL9M", "LVC9M", "TNPR9M", "PL9M", "STRP", "STRC",
"PSTR")
# Convert qualitative data columns to factor
pdata[, qual] <- lapply(pdata[, qual], as.factor)
str(pdata)
#> 'data.frame': 168 obs. of 26 variables:
#> $ CUAL : Factor w/ 4 levels "Dark green","Green purple",..: 3 1 2 2 2 2 4 2 2 1 ...
#> $ LNGS : Factor w/ 3 levels "Long","Medium",..: 3 1 2 2 2 2 2 1 1 1 ...
#> $ PTLC : Factor w/ 5 levels "Dark green","Green purple",..: 3 4 4 4 4 5 4 2 2 5 ...
#> $ DSTA : Factor w/ 5 levels "Absent","Central part",..: 1 5 5 5 5 5 5 4 2 5 ...
#> $ LFRT : Factor w/ 4 levels "25-50% leaf retention",..: 1 1 1 1 3 2 2 2 2 2 ...
#> $ LBTEF : Factor w/ 6 levels "0","1","2","3",..: 3 1 2 1 4 5 4 4 3 2 ...
#> $ CBTR : Factor w/ 3 levels "Cream","White",..: 2 2 2 2 1 2 1 1 1 1 ...
#> $ NMLB : Factor w/ 9 levels "0","1","2","3",..: 3 1 2 1 4 4 4 3 3 4 ...
#> $ ANGB : Factor w/ 4 levels "150-300","450-600",..: 1 4 1 4 2 2 2 1 2 2 ...
#> $ CUAL9M: Factor w/ 5 levels "Dark green","Green",..: 1 1 3 5 3 3 5 5 5 4 ...
#> $ LVC9M : Factor w/ 5 levels "Dark green","Green",..: 4 3 3 3 3 1 3 1 4 3 ...
#> $ TNPR9M: Factor w/ 5 levels "1","2","3","4",..: 5 5 4 2 5 4 2 5 5 5 ...
#> $ PL9M : Factor w/ 2 levels "Long (25-30cm)",..: 2 2 1 1 1 1 1 1 2 2 ...
#> $ STRP : Factor w/ 4 levels "Absent","Intermediate",..: 2 3 1 1 1 1 4 1 1 4 ...
#> $ STRC : Factor w/ 2 levels "Absent","Present": 2 2 1 2 1 1 2 1 1 2 ...
#> $ PSTR : Factor w/ 2 levels "Irregular","Tending toward horizontal": 1 2 2 2 1 2 2 2 1 2 ...
#> $ NMSR : num 6 2 6 2 20 13 4 14 10 5 ...
#> $ TTRN : num 3 0.5 3 2 5 ...
#> $ TFWSR : num 1.4 2.6 1.2 1.6 5 7 4.2 2.8 2.8 4 ...
#> $ TTRW : num 0.7 0.65 0.6 1.6 1.25 ...
#> $ TFWSS : num 1 2.8 2.8 2.4 16 12 9 4.4 6.2 5 ...
#> $ TTSW : num 0.5 0.7 1.4 2.4 4 ...
#> $ TTPW : num 2.4 5.4 4 4 21 19 13.2 7.2 9 9 ...
#> $ AVPW : num 1.2 1.35 2 4 5.25 4.75 3.3 2.4 1.8 2.25 ...
#> $ ARSR : num 2 0 2 0 3 0 0 6 0 0 ...
#> $ SRDM : num 42 39.8 29.7 43 37.9 37 38.9 36.9 41 37.9 ...
diversity.compare(x = pdata$CUAL, group = pdata$LNGS, R = 100,
base = exp(1), na.omit = TRUE)
#> Computing diversity indices.
#> Performing global permutation tests.
#> Performing pairwise permutation tests.
#> Computing bootstrap confidence intervals.
#> Generating diversity profiles.
#> Error in diversity.profile(x = x, group = group, q = q, conf = ci.conf, R = R, parameter = "hill", ci.type = ci.type, parallel = parallel, ncpus = ncpus, cl = cl): unused argument (conf = ci.conf)
diversity.compare(x = pdata$ANGB, group = pdata$LNGS, R = 100,
base = exp(1), na.omit = TRUE)
#> Computing diversity indices.
#> Performing global permutation tests.
#> Performing pairwise permutation tests.
#> Computing bootstrap confidence intervals.
#> Generating diversity profiles.
#> Error in diversity.profile(x = x, group = group, q = q, conf = ci.conf, R = R, parameter = "hill", ci.type = ci.type, parallel = parallel, ncpus = ncpus, cl = cl): unused argument (conf = ci.conf)