An example germplasm characterisation data of a core collection generated from 1591 accessions of IITA Cassava collection (International Institute of Tropical Agriculture et al. 2019) using 10 quantitative and 48 qualitative trait data with CoreHunter3 (corehunter). The core set was generated using distance based measures giving equal weightage to Average entry-to-nearest-entry distance (EN) and Average accession-to-nearest-entry distance (AN). Includes data on 26 descriptors for 168 (10 % of cassava_EC) accessions. It is used to demonstrate the various functions of EvaluateCore package.

cassava_CC

Format

A data frame with 58 columns:

CUAL

Colour of unexpanded apical leaves

LNGS

Length of stipules

PTLC

Petiole colour

DSTA

Distribution of anthocyanin

LFRT

Leaf retention

LBTEF

Level of branching at the end of flowering

CBTR

Colour of boiled tuberous root

NMLB

Number of levels of branching

ANGB

Angle of branching

CUAL9M

Colours of unexpanded apical leaves at 9 months

LVC9M

Leaf vein colour at 9 months

TNPR9M

Total number of plants remaining per accession at 9 months

PL9M

Petiole length at 9 months

STRP

Storage root peduncle

STRC

Storage root constrictions

PSTR

Position of root

NMSR

Number of storage root per plant

TTRN

Total root number per plant

TFWSR

Total fresh weight of storage root per plant

TTRW

Total root weight per plant

TFWSS

Total fresh weight of storage shoot per plant

TTSW

Total shoot weight per plant

TTPW

Total plant weight

AVPW

Average plant weight

ARSR

Amount of rotted storage root per plant

SRDM

Storage root dry matter

Details

Further details on how the example dataset was built from the original data is available online.

References

International Institute of Tropical Agriculture, Benjamin F, Marimagne T (2019). “Cassava morphological characterization. Version 2018.1.” www.genesys-pgr.org.

Examples


data(cassava_CC)
summary(cassava_CC)
#>      CUAL               LNGS               PTLC               DSTA          
#>  Length:168         Length:168         Length:168         Length:168        
#>  Class :character   Class :character   Class :character   Class :character  
#>  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
#>                                                                             
#>                                                                             
#>                                                                             
#>      LFRT              LBTEF               CBTR               NMLB          
#>  Length:168         Length:168         Length:168         Length:168        
#>  Class :character   Class :character   Class :character   Class :character  
#>  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
#>                                                                             
#>                                                                             
#>                                                                             
#>      ANGB              CUAL9M             LVC9M              TNPR9M         
#>  Length:168         Length:168         Length:168         Length:168        
#>  Class :character   Class :character   Class :character   Class :character  
#>  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
#>                                                                             
#>                                                                             
#>                                                                             
#>      PL9M               STRP               STRC               PSTR          
#>  Length:168         Length:168         Length:168         Length:168        
#>  Class :character   Class :character   Class :character   Class :character  
#>  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
#>                                                                             
#>                                                                             
#>                                                                             
#>       NMSR            TTRN            TFWSR             TTRW        
#>  Min.   : 1.00   Min.   : 0.250   Min.   : 0.200   Min.   : 0.1000  
#>  1st Qu.: 5.00   1st Qu.: 2.333   1st Qu.: 2.400   1st Qu.: 0.9333  
#>  Median : 9.00   Median : 3.500   Median : 4.300   Median : 1.5800  
#>  Mean   :10.89   Mean   : 3.931   Mean   : 6.348   Mean   : 2.6178  
#>  3rd Qu.:14.25   3rd Qu.: 5.000   3rd Qu.: 7.950   3rd Qu.: 3.2000  
#>  Max.   :55.00   Max.   :13.750   Max.   :38.000   Max.   :20.2000  
#>      TFWSS             TTSW             TTPW            AVPW       
#>  Min.   : 0.200   Min.   : 0.100   Min.   : 0.40   Min.   : 0.200  
#>  1st Qu.: 2.700   1st Qu.: 1.113   1st Qu.: 5.35   1st Qu.: 2.190  
#>  Median : 5.400   Median : 2.058   Median :10.40   Median : 3.600  
#>  Mean   : 7.748   Mean   : 3.069   Mean   :14.10   Mean   : 5.687  
#>  3rd Qu.:11.000   3rd Qu.: 3.950   3rd Qu.:19.00   3rd Qu.: 7.300  
#>  Max.   :42.000   Max.   :22.000   Max.   :80.00   Max.   :33.000  
#>       ARSR            SRDM      
#>  Min.   :0.000   Min.   :21.90  
#>  1st Qu.:0.000   1st Qu.:35.60  
#>  Median :1.000   Median :38.15  
#>  Mean   :1.702   Mean   :37.73  
#>  3rd Qu.:3.000   3rd Qu.:40.23  
#>  Max.   :8.000   Max.   :48.10  

quant <- c("NMSR", "TTRN", "TFWSR", "TTRW", "TFWSS", "TTSW", "TTPW", "AVPW",
           "ARSR", "SRDM")
qual <- c("CUAL", "LNGS", "PTLC", "DSTA", "LFRT", "LBTEF", "CBTR", "NMLB",
          "ANGB", "CUAL9M", "LVC9M", "TNPR9M", "PL9M", "STRP", "STRC",
          "PSTR")

lapply(seq_along(cassava_CC[, qual]),
       function(i) barplot(table(cassava_CC[, qual][, i]),
                           xlab = names(cassava_CC[, qual])[i]))
















#> [[1]]
#>      [,1]
#> [1,]  0.7
#> [2,]  1.9
#> [3,]  3.1
#> [4,]  4.3
#> 
#> [[2]]
#>      [,1]
#> [1,]  0.7
#> [2,]  1.9
#> [3,]  3.1
#> 
#> [[3]]
#>      [,1]
#> [1,]  0.7
#> [2,]  1.9
#> [3,]  3.1
#> [4,]  4.3
#> [5,]  5.5
#> 
#> [[4]]
#>      [,1]
#> [1,]  0.7
#> [2,]  1.9
#> [3,]  3.1
#> [4,]  4.3
#> [5,]  5.5
#> 
#> [[5]]
#>      [,1]
#> [1,]  0.7
#> [2,]  1.9
#> [3,]  3.1
#> [4,]  4.3
#> 
#> [[6]]
#>      [,1]
#> [1,]  0.7
#> [2,]  1.9
#> [3,]  3.1
#> [4,]  4.3
#> [5,]  5.5
#> [6,]  6.7
#> 
#> [[7]]
#>      [,1]
#> [1,]  0.7
#> [2,]  1.9
#> [3,]  3.1
#> 
#> [[8]]
#>       [,1]
#>  [1,]  0.7
#>  [2,]  1.9
#>  [3,]  3.1
#>  [4,]  4.3
#>  [5,]  5.5
#>  [6,]  6.7
#>  [7,]  7.9
#>  [8,]  9.1
#>  [9,] 10.3
#> 
#> [[9]]
#>      [,1]
#> [1,]  0.7
#> [2,]  1.9
#> [3,]  3.1
#> [4,]  4.3
#> 
#> [[10]]
#>      [,1]
#> [1,]  0.7
#> [2,]  1.9
#> [3,]  3.1
#> [4,]  4.3
#> [5,]  5.5
#> 
#> [[11]]
#>      [,1]
#> [1,]  0.7
#> [2,]  1.9
#> [3,]  3.1
#> [4,]  4.3
#> [5,]  5.5
#> 
#> [[12]]
#>      [,1]
#> [1,]  0.7
#> [2,]  1.9
#> [3,]  3.1
#> [4,]  4.3
#> [5,]  5.5
#> 
#> [[13]]
#>      [,1]
#> [1,]  0.7
#> [2,]  1.9
#> 
#> [[14]]
#>      [,1]
#> [1,]  0.7
#> [2,]  1.9
#> [3,]  3.1
#> [4,]  4.3
#> 
#> [[15]]
#>      [,1]
#> [1,]  0.7
#> [2,]  1.9
#> 
#> [[16]]
#>      [,1]
#> [1,]  0.7
#> [2,]  1.9
#> 

lapply(seq_along(cassava_CC[, quant]),
       function(i) hist(table(cassava_CC[, quant][, i]),
                        xlab = names(cassava_CC[, quant])[i],
                        main = ""))










#> [[1]]
#> $breaks
#> [1]  0  2  4  6  8 10 12
#> 
#> $counts
#> [1] 9 4 5 4 4 4
#> 
#> $density
#> [1] 0.15000000 0.06666667 0.08333333 0.06666667 0.06666667 0.06666667
#> 
#> $mids
#> [1]  1  3  5  7  9 11
#> 
#> $xname
#> [1] "table(cassava_CC[, quant][, i])"
#> 
#> $equidist
#> [1] TRUE
#> 
#> attr(,"class")
#> [1] "histogram"
#> 
#> [[2]]
#> $breaks
#>  [1]  0  2  4  6  8 10 12 14 16 18 20
#> 
#> $counts
#>  [1] 32  9  4  1  2  1  0  0  0  2
#> 
#> $density
#>  [1] 0.313725490 0.088235294 0.039215686 0.009803922 0.019607843 0.009803922
#>  [7] 0.000000000 0.000000000 0.000000000 0.019607843
#> 
#> $mids
#>  [1]  1  3  5  7  9 11 13 15 17 19
#> 
#> $xname
#> [1] "table(cassava_CC[, quant][, i])"
#> 
#> $equidist
#> [1] TRUE
#> 
#> attr(,"class")
#> [1] "histogram"
#> 
#> [[3]]
#> $breaks
#> [1] 1 2 3 4 5 6 7 8
#> 
#> $counts
#> [1] 42 11  7  3  3  2  1
#> 
#> $density
#> [1] 0.60869565 0.15942029 0.10144928 0.04347826 0.04347826 0.02898551 0.01449275
#> 
#> $mids
#> [1] 1.5 2.5 3.5 4.5 5.5 6.5 7.5
#> 
#> $xname
#> [1] "table(cassava_CC[, quant][, i])"
#> 
#> $equidist
#> [1] TRUE
#> 
#> attr(,"class")
#> [1] "histogram"
#> 
#> [[4]]
#> $breaks
#>  [1]  1  2  3  4  5  6  7  8  9 10 11
#> 
#> $counts
#>  [1] 82  6  3  0  1  1  1  0  0  1
#> 
#> $density
#>  [1] 0.86315789 0.06315789 0.03157895 0.00000000 0.01052632 0.01052632
#>  [7] 0.01052632 0.00000000 0.00000000 0.01052632
#> 
#> $mids
#>  [1]  1.5  2.5  3.5  4.5  5.5  6.5  7.5  8.5  9.5 10.5
#> 
#> $xname
#> [1] "table(cassava_CC[, quant][, i])"
#> 
#> $equidist
#> [1] TRUE
#> 
#> attr(,"class")
#> [1] "histogram"
#> 
#> [[5]]
#> $breaks
#>  [1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
#> 
#> $counts
#>  [1] 37 14  0 11  0  6  0  8  0  1
#> 
#> $density
#>  [1] 0.96103896 0.36363636 0.00000000 0.28571429 0.00000000 0.15584416
#>  [7] 0.00000000 0.20779221 0.00000000 0.02597403
#> 
#> $mids
#>  [1] 1.25 1.75 2.25 2.75 3.25 3.75 4.25 4.75 5.25 5.75
#> 
#> $xname
#> [1] "table(cassava_CC[, quant][, i])"
#> 
#> $equidist
#> [1] TRUE
#> 
#> attr(,"class")
#> [1] "histogram"
#> 
#> [[6]]
#> $breaks
#>  [1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
#> 
#> $counts
#>  [1] 64 16  0 10  0  2  0  2  0  4
#> 
#> $density
#>  [1] 1.30612245 0.32653061 0.00000000 0.20408163 0.00000000 0.04081633
#>  [7] 0.00000000 0.04081633 0.00000000 0.08163265
#> 
#> $mids
#>  [1] 1.25 1.75 2.25 2.75 3.25 3.75 4.25 4.75 5.25 5.75
#> 
#> $xname
#> [1] "table(cassava_CC[, quant][, i])"
#> 
#> $equidist
#> [1] TRUE
#> 
#> attr(,"class")
#> [1] "histogram"
#> 
#> [[7]]
#> $breaks
#> [1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
#> 
#> $counts
#> [1] 68 18  0 13  0  5  0  1
#> 
#> $density
#> [1] 1.29523810 0.34285714 0.00000000 0.24761905 0.00000000 0.09523810 0.00000000
#> [8] 0.01904762
#> 
#> $mids
#> [1] 1.25 1.75 2.25 2.75 3.25 3.75 4.25 4.75
#> 
#> $xname
#> [1] "table(cassava_CC[, quant][, i])"
#> 
#> $equidist
#> [1] TRUE
#> 
#> attr(,"class")
#> [1] "histogram"
#> 
#> [[8]]
#> $breaks
#> [1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
#> 
#> $counts
#> [1] 90 24  0  7  0  1  0  1
#> 
#> $density
#> [1] 1.46341463 0.39024390 0.00000000 0.11382114 0.00000000 0.01626016 0.00000000
#> [8] 0.01626016
#> 
#> $mids
#> [1] 1.25 1.75 2.25 2.75 3.25 3.75 4.25 4.75
#> 
#> $xname
#> [1] "table(cassava_CC[, quant][, i])"
#> 
#> $equidist
#> [1] TRUE
#> 
#> attr(,"class")
#> [1] "histogram"
#> 
#> [[9]]
#> $breaks
#> [1]  0 10 20 30 40 50 60 70
#> 
#> $counts
#> [1] 5 0 3 0 0 0 1
#> 
#> $density
#> [1] 0.05555556 0.00000000 0.03333333 0.00000000 0.00000000 0.00000000 0.01111111
#> 
#> $mids
#> [1]  5 15 25 35 45 55 65
#> 
#> $xname
#> [1] "table(cassava_CC[, quant][, i])"
#> 
#> $equidist
#> [1] TRUE
#> 
#> attr(,"class")
#> [1] "histogram"
#> 
#> [[10]]
#> $breaks
#>  [1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
#> 
#> $counts
#>  [1] 59 25  0 11  0  5  0  0  0  1
#> 
#> $density
#>  [1] 1.16831683 0.49504950 0.00000000 0.21782178 0.00000000 0.09900990
#>  [7] 0.00000000 0.00000000 0.00000000 0.01980198
#> 
#> $mids
#>  [1] 1.25 1.75 2.25 2.75 3.25 3.75 4.25 4.75 5.25 5.75
#> 
#> $xname
#> [1] "table(cassava_CC[, quant][, i])"
#> 
#> $equidist
#> [1] TRUE
#> 
#> attr(,"class")
#> [1] "histogram"
#>