R/augmentedRCBD.bulk.R
augmentedRCBD.bulk.Rd
augmentedRCBD.bulk
is a wrapper around the functions
augmentedRCBD
, describe.augmentedRCBD
,
freqdist.augmentedRCBD
and gva.augmentedRCBD
. It will carry out
these analyses for multiple traits/characters from the input data as a data
frame object.
augmentedRCBD.bulk(
data,
block,
treatment,
traits,
checks = NULL,
alpha = 0.05,
describe = TRUE,
freqdist = TRUE,
gva = TRUE,
k = 2.063,
check.col = "red",
console = TRUE
)
The data as a data frame object. The data frame should possess columns specifying the block, treatment and multiple traits/characters.
Name of column specifying the blocks in the design as a character string.
Name of column specifying the treatments as a character string.
Name of columns specifying the multiple traits/characters as a character vector.
Character vector of the checks present in treatment
levels. If not specified, checks are inferred from the data on the basis of
number of replications of treatments/genotypes.
Type I error probability (Significance level) to be used for multiple comparisons.
If TRUE
, descriptive statistics will be computed.
Default is TRUE
.
If TRUE
, frequency distributions be plotted. Default
is TRUE
.
If TRUE
, genetic variability analysis will be done. Default
is TRUE
.
The standardized selection differential or selection intensity
required for computation of Genetic advance. Default is 2.063 for 5%
selection proportion (see Details in
gva.augmentedRCBD
). Ignored if
gva = FALSE
.
The colour(s) to be used to highlight check values in the
plot as a character vector. Must be valid colour values in R (named
colours, hexadecimal representation, index of colours [1:8
] in
default R palette()
etc.).
If TRUE
, output will be printed to console. Default is
TRUE
.
A list of class augmentedRCBD.bulk
containing the following
components:
Details
Details of the augmented design used and the traits/characters.
ANOVA, Treatment Adjusted
A data frame of mean sum of squares, p value and stastical significance of the specified traits from treatment adjusted ANOVA.
ANOVA, Block
Adjusted
A data frame of mean sum of squares, p value and stastical significance of the specified traits from block adjusted ANOVA
Means
A data frame of the adjusted means of the treatments for the specified traits.
Check statistics
A list of data frames with check statistics such as number of replications, standard error, minimum and maximum value
alpha
Type I error probability (Significance level) used.
Std. Errors
A data frame of standard error of difference between various combinations for the specified traits.
CD
A data frame of critical difference (at the specified alpha) between various combinations for the specified traits.
Overall adjusted mean
A data frame of the overall adjusted mean for the specified traits.
CV
A data frame of the coefficient of variance for the specified traits.
Descriptive statistics
A data frame of descriptive statistics for the specified traits.
Frequency distribution
A list of ggplot2 plot grobs of the frequency distribution plots.
k
The standardized selection differential or selection intensity used for computaton of Genetic advance.
Genetic variability analysis
A data frame of genetic variability statistics for the specified traits.
GVA plots
A list of three ggplot2 objects with the plots for (a) Phenotypic and Genotypic CV, (b) Broad sense heritability and (c) Genetic advance over mean
warnings
A list of warning messages (if any) captured during model fitting, frequency distribution plotting and genetic variability analysis.
In this case treatment comparisons/grouping by least significant
difference or Tukey's honest significant difference method is not computed.
Also the output object size is reduced using the simplify = TRUE
argument in the augmentedRCBD
function.
# Example data
blk <- c(rep(1,7),rep(2,6),rep(3,7))
trt <- c(1, 2, 3, 4, 7, 11, 12, 1, 2, 3, 4, 5, 9, 1, 2, 3, 4, 8, 6, 10)
y1 <- c(92, 79, 87, 81, 96, 89, 82, 79, 81, 81, 91, 79, 78, 83, 77, 78, 78,
70, 75, 74)
y2 <- c(258, 224, 238, 278, 347, 300, 289, 260, 220, 237, 227, 281, 311, 250,
240, 268, 287, 226, 395, 450)
dataf <- data.frame(blk, trt, y1, y2)
bout <- augmentedRCBD.bulk(data = dataf, block = "blk",
treatment = "trt", traits = c("y1", "y2"),
checks = NULL, alpha = 0.05, describe = TRUE,
freqdist = TRUE, gva = TRUE,
check.col = c("brown", "darkcyan",
"forestgreen", "purple"),
console = TRUE)
#>
#> ANOVA for y1 computed (1/2)
#>
#> ANOVA for y2 computed (2/2)
#>
#> Augmented Design Details
#> ========================
#>
#> Number of blocks "3"
#> Number of treatments "12"
#> Number of check treatments "4"
#> Number of test treatments "8"
#> Check treatments "1, 2, 3, 4"
#> Number of traits "2"
#> Traits "y1, y2"
#>
#>
#> ANOVA, Treatment Adjusted
#> =========================
#> Mean.Sq
#> Source Df y1 y2
#> Block (ignoring Treatments) 2 180.04 * 3509.67 **
#> Treatment (eliminating Blocks) 11 25.92 ⁿˢ 5360.49 **
#> Treatment: Check 3 17.64 ⁿˢ 716.75 ⁿˢ
#> Treatment: Test and Test vs. Check 8 29.02 ⁿˢ 7101.89 **
#> Residuals 6 26.97 286.25
#> ⁿˢ P > 0.05; * P <= 0.05; ** P <= 0.01
#>
#> ANOVA, Block Adjusted
#> =====================
#> Mean.Sq
#> Source Df y1 y2
#> Treatment (ignoring Blocks) 11 52.33 ⁿˢ 5882.50 **
#> Treatment: Check 3 17.64 ⁿˢ 716.75 ⁿˢ
#> Treatment: Test vs. Check 1 16.87 ⁿˢ 27694.41 **
#> Treatment: Test 7 72.27 ⁿˢ 4980.41 **
#> Block (eliminating Treatments) 2 34.75 ⁿˢ 638.58 ⁿˢ
#> Residuals 6 26.97 286.25
#> ⁿˢ P > 0.05; * P <= 0.05; ** P <= 0.01
#>
#> Coefficient of Variation
#> ========================
#> Trait CV
#> y1 6.37
#> y2 6.06
#>
#>
#> Overall Adjusted Mean
#> =====================
#> Trait Overall.adjusted.mean
#> y1 81.06
#> y2 298.48
#>
#>
#> Standard Errors
#> ===============
#> Comparison y1 y2
#> A Test Treatment and a Control Treatment 6.70 21.84
#> Control Treatment Means 4.24 13.81
#> Two Test Treatments (Different Blocks) 8.21 26.75
#> Two Test Treatments (Same Block) 7.34 23.93
#>
#>
#> Critical Difference
#> ===================
#> alpha = 0.05
#> Comparison y1 y2
#> A Test Treatment and a Control Treatment 16.41 53.45
#> Control Treatment Means 10.38 33.80
#> Two Test Treatments (Different Blocks) 20.09 65.46
#> Two Test Treatments (Same Block) 17.97 58.55
#>
#>
#> Descriptive Statistics
#> ======================
#> Trait Count Mean Std.Error Std.Deviation Min Max Skewness Skewness_sig
#> y1 12 81.06 1.55 5.36 73.25 93.50 0.93 ⁿˢ
#> y2 12 298.48 18.92 65.55 213.67 437.67 0.74 ⁿˢ
#> Kurtosis Kurtosis_sig
#> 3.52 ⁿˢ
#> 2.79 ⁿˢ
#> ⁿˢ P > 0.05; * P <= 0.05; ** P <= 0.01
#>
#>
#> Genetic Variability Analysis
#> ============================
#> k = 2.063
#> Trait Mean PV GV EV GCV GCV.category PCV PCV.category ECV
#> y1 † 81.06 72.27 45.30 26.97 8.30 Low 10.49 Medium 6.41
#> y2 298.48 4980.41 4694.16 286.25 22.95 High 23.64 High 5.67
#> hBS hBS.category GA GAM GAM.category
#> 62.68 High 10.99 13.56 Medium
#> 94.25 High 137.22 45.97 High
#>
#> Warning:
#> † P-value for "Treatment: Test" is > 0.05. Genetic variability analysis may not be appropriate for this trait.
#> Warning:
#> ‡ Negative GV detected.
#> GCV, GCV category, hBS, hBS category, GA, GAM and
#> GAM category could not be computed.
#>
#>
#> Warning Messages
#> ================
#>
#>
#> [Frequency Distribution]
#> <y1>
#> Removed 2 rows containing missing values or values outside the scale range
#> (`geom_bar()`).
#> <y2>
#> Removed 2 rows containing missing values or values outside the scale range
#> (`geom_bar()`).
#>
#>
#> [GVA]
#> <y1>
#> P-value for "Treatment: Test" is > 0.05. Genetic variability analysis may not be appropriate for this trait.
#>
#> Treatment Means
#> ===============
#> Treatment Block y1 y2
#> 1 84.67 256.00
#> 10 3 77.25 437.67
#> 11 1 86.50 299.42
#> 12 1 79.50 288.42
#> 2 79.00 228.00
#> 3 82.00 247.67
#> 4 83.33 264.00
#> 5 2 78.25 293.92
#> 6 3 78.25 382.67
#> 7 1 93.50 346.42
#> 8 3 73.25 213.67
#> 9 2 77.25 323.92
# Frequency distribution plots
lapply(bout$`Frequency distribution`, plot)
#> $y1
#> NULL
#>
#> $y2
#> NULL
#>
# GVA plots
bout$`GVA plots`
#> $`Phenotypic and Genotypic CV`
#>
#> $`Broad sense heritability`
#>
#> $`Genetic advance over mean`
#>