ICAR-National Bureau of Plant Genetic Resources, New Delhi.

logo

Overview

The package germinationmetrics is a collection of functions which implements various methods for describing the time-course of germination in terms of single-value germination indices as well as fitted curves.

The goal of this vignette is to introduce the users to these functions and get started in describing sequentially recorded germination count data. This document assumes a basic knowledge of R programming language.

Installation

The package can be installed using the following functions:

# Install from CRAN
install.packages('germinationmetrics', dependencies=TRUE)

# Install development version from Github
devtools::install_github("aravind-j/germinationmetrics")

Then the package can be loaded using the function


--------------------------------------------------------------------------------
Welcome to germinationmetrics version 0.1.8.9000


# To know how to use this package type:
  browseVignettes(package = 'germinationmetrics')
  for the package vignette.

# To know whats new in this version type:
  news(package='germinationmetrics')
  for the NEWS file.

# To cite the methods in the package type:
  citation(package='germinationmetrics')

# To suppress this message use:
  suppressPackageStartupMessages(library(germinationmetrics))
--------------------------------------------------------------------------------

Version History

The current version of the package is 0.1.8. The previous versions are as follows.

Table 1. Version history of germinationmetrics R package.

Version Date
0.1.0 2018-04-17
0.1.1 2018-07-26
0.1.1.1 2018-10-16
0.1.2 2018-10-31
0.1.3 2019-01-19
0.1.4 2020-06-16
0.1.5 2021-02-17
0.1.6 2022-06-15
0.1.7 2022-08-28

To know detailed history of changes use news(package='germinationmetrics').

Germination count data

Typically in a germination test, the germination count data of a fixed number of seeds is recorded at regular intervals for a definite period of time or until all the seeds have germinated. These germination count data can be either partial or cumulative (Table 2).

Table 2 : A typical germination count data.

intervals counts cumulative.counts
1 0 0
2 0 0
3 0 0
4 0 0
5 4 4
6 17 21
7 10 31
8 7 38
9 1 39
10 0 39
11 1 40
12 0 40
13 0 40
14 0 40

The time-course of germination can be plotted as follows.

data <- data.frame(intervals = 1:14,
                   counts = c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0))

# Partial germination counts
x <- data$counts
# Cumulative germination counts
y <- cumsum(x)
# Time intervals of observations
int <- data$intervals

plot(int, cumsum(x))

Single-value germination indices

The details about the single-value germination indices implemented in germinationmetrics are described in Table 3.

Table 3 : Single-value germination indices implemented in germinationmetrics.

Germination index Function Details Unit Measures Reference
Germination percentage or Final germination percentage or Germinability (\(GP\)) GermPercent It is computed as follows.
\[GP = \frac{N_{g}}{N_{t}} \times 100\]
Where, \(N_{g}\) is the number of germinated seeds and \(N_{t}\) is the total number of seeds.
Percentage (%) Germination capacity ISTA (2015)
Peak germination percentage (\(PGP\)) PeakGermPercent It is computed as follows.
\[PGP = \frac{N_{max}}{N_{t}} \times 100\]
Where, \(N_{max}\) is the maximum number of seeds germinated per interval.
Percentage (%) Germination capacity Vallance (1950); Roh et al. (2004)
Time for the first germination or Germination time lag (\(t_{0}\)) FirstGermTime It is the time for first germination to occur (e.g. First day of germination).
\[t_{0} = \min \left\{ T_{i} : N_{i} \neq 0 \right\}\]
Where, \(T_{i}\) is the time from the start of the experiment to the \(i\)th interval and \(N_{i}\) is the number of seeds germinated in the \(i\)th time interval (not the accumulated number, but the number corresponding to the \(i\)th interval)
time Germination time Edwards (1932); Czabator (1962); Goloff and Bazzaz (1975); Labouriau (1983a); Ranal (1999); Quintanilla et al. (2000)
Time for the last germination (\(t_{g}\)) LastGermTime It is the time for last germination to occur (e.g. Last day of germination)
\[t_{g} = \max \left\{ T_{i} : N_{i} \neq 0 \right\}\]
Where, \(T_{i}\) is the time from the start of the experiment to the \(i\)th interval and \(N_{i}\) is the number of seeds germinated in the \(i\)th time interval (not the accumulated number, but the number corresponding to the \(i\)th interval)
time Germination time Edwards (1932)
Time spread of germination or Germination distribution TimeSpreadGerm It is the difference between time for last germination (\(t_{g}\)) and time for first germination (\(t_{0}\)).
\[Time\,spread\,of\, germination = t_{g}-t_{0}\]
time Germination time Al-Mudaris (1998); Schrader and Graves (2000); Kader (2005)
Peak period of germination or Modal time of germination (\(t_{peak}\)) PeakGermTime It is the time in which highest frequency of germinated seeds are observed and need not be unique.
\[t_{peak} = \left\{ T_{i} : N_{i} = N_{max} \right\}\]
Where, \(T_{i}\) is the time from the start of the experiment to the \(i\)th interval, \(N_{i}\) is the number of seeds germinated in the \(i\)th time interval (not the accumulated number, but the number corresponding to the \(i\)th interval) and \(N_{max}\) is the maximum number of seeds germinated per interval.
time Germination time Ranal and Santana (2006)
Median germination time (\(t_{50}\)) (Coolbear) t50 It is the time to reach 50% of final/maximum germination.
With argument method specified as "coolbear", it is computed as follows.
\[t_{50}=T_{i}+\frac{(\frac{N+1}{2}-N_{i})(T_{j}-T_{i})}{N_{j}-N_{i}}\]
Where, \(t_{50}\) is the median germination time, \(N\) is the final number of germinated seeds, and \(N_{i}\) and \(N_{j}\) are the total number of seeds germinated in adjacent counts at time \(T_{i}\) and \(T_{j}\) respectively, when \(N_{i} < \frac{N + 1}{2} < N_{j}\).
time Germination time Coolbear et al. (1984)
Median germination time (\(t_{50}\)) (Farooq) t50 With argument method specified as "farooq", it is computed as follows.
\[t_{50}=T_{i}+\frac{(\frac{N}{2}-N_{i})(T_{j}-T_{i})}{N_{j}-N_{i}}\]
Where, \(t_{50}\) is the median germination time, \(N\) is the final number of germinated seeds, and \(N_{i}\) and \(N_{j}\) are the total number of seeds germinated in adjacent counts at time \(T_{i}\) and \(T_{j}\) respectively, when \(N_{i} < \frac{N}{2} < N_{j}\).
time Germination time Farooq et al. (2005)
Mean germination time or Mean length of incubation time (\(\overline{T}\)) or Germination resistance (\(GR\)) or Sprouting index (\(SI\)) or Emergence index (\(EI\)) MeanGermTime It is the average length of time required for maximum germination of a seed lot and is estimated according to the following formula.
\[\overline{T} = \frac{\sum_{i=1}^{k}N_{i}T_{i}}{\sum_{i=1}^{k}N_{i}}\]
Where, \(T_{i}\) is the time from the start of the experiment to the \(i\)th interval, \(N_{i}\) is the number of seeds germinated in the \(i\)th time interval (not the accumulated number, but the number corresponding to the \(i\)th interval), and \(k\) is the total number of time intervals.
It is the inverse of mean germination rate (\(\overline{V}\)).
\[\overline{T} = \frac{1}{\overline{V}}\]
time Germination time Edmond and Drapala (1958); Czabator (1962); Smith and Millet (1964); Gordon (1969); Gordon (1971); Mock and Eberhart (1972); Ellis and Roberts (1980) Labouriau (1983a); Ranal and Santana (2006)
Variance of germination time (\(s_{T}^{2}\)) VarGermTime It is computed according to the following formula.
\[s_{T}^{2} = \frac{\sum_{i=1}^{k}N_{i}(T_{i}-\overline{T})^{2}}{\sum_{i=1}^{k}N_{i}-1}\]
Where, \(T_{i}\) is the time from the start of the experiment to the \(i\)th interval, \(N_{i}\) is the number of seeds germinated in the \(i\)th time interval (not the accumulated number, but the number corresponding to the \(i\)th interval), and \(k\) is the total number of time intervals.
time-1 Germination time Labouriau (1983a); Ranal and Santana (2006)
Standard error of germination time (\(s_{\overline{T}}\)) SEGermTime It signifies the accuracy of the calculation of the mean germination time.
It is estimated according to the following formula:
\[s_{\overline{T}} = \sqrt{\frac{s_{T}^{2}}{\sum_{i=1}^{k}N_{i}}}\]
Where, \(N_{i}\) is the number of seeds germinated in the \(i\)th time interval (not the accumulated number, but the number corresponding to the \(i\)th interval) and \(k\) is the total number of time intervals.
time Germination time Labouriau (1983a); Ranal and Santana (2006)
Mean germination rate (\(\overline{V}\)) MeanGermRate It is computed according to the following formula:
\[\overline{V} = \frac{\sum_{i=1}^{k}N_{i}}{\sum_{i=1}^{k}N_{i}T_{i}}\]
Where, \(T_{i}\) is the time from the start of the experiment to the \(i\)th interval, \(N_{i}\) is the number of seeds germinated in the \(i\)th time interval (not the accumulated number, but the number corresponding to the \(i\)th interval), and \(k\) is the total number of time intervals.
It is the inverse of mean germination time (\(\overline{T}\)).
\[\overline{V} = \frac{1}{\overline{T}}\]
time-1 Germination rate Labouriau and Valadares (1976); Labouriau (1983b); Ranal and Santana (2006)
Coefficient of velocity of germination (\(CVG\)) or Coefficient of rate of germination (\(CRG\)) or Kotowski’s coefficient of velocity CVG It is estimated according to the following formula.
\[CVG = \frac{\sum_{i=1}^{k}N_{i}}{\sum_{i=1}^{k}N_{i}T_{i}} \times 100\]
\[CVG = \overline{V} \times 100\]
Where, \(T_{i}\) is the time from the start of the experiment to the \(i\)th interval, \(N_{i}\) is the number of seeds germinated in the \(i\)th time interval (not the accumulated number, but the number corresponding to the \(i\)th interval), and \(k\) is the total number of time intervals.
% time-1 Germination rate Kotowski (1926), Nichols and Heydecker (1968); Bewley and Black (1994); Labouriau (1983b); Scott et al. (1984)
Variance of germination rate (\(s_{V}^{2}\)) VarGermRate It is calculated according to the following formula.
\[s_{V}^{2} = \overline{V}^{4} \times s_{T}^{2}\]
Where, \(s_{T}^{2}\) is the variance of germination time.
time-2 Germination rate Labouriau (1983b); Ranal and Santana (2006)
Standard error of germination rate (\(s_{\overline{V}}\)) SEGermRate It is estimated according to the following formula.
\[s_{\overline{V}} = \sqrt{\frac{s_{V}^{2}}{\sum_{i=1}^{k}N_{i}}}\]
Where, \(N_{i}\) is the number of seeds germinated in the \(i\)th time interval (not the accumulated number, but the number corresponding to the \(i\)th interval), and \(k\) is the total number of time intervals.
time-1 Germination rate Labouriau (1983b); Ranal and Santana (2006)
Germination rate as the reciprocal of the median time (\(v_{50}\)) GermRateRecip It is the reciprocal of the median germination time (\(t_{50}\)).
\[v_{50} = \frac{1}{t_{50}}\]
time-1 Germination rate Went (1957); Labouriau (1983b); Ranal and Santana (2006)
Speed of germination (\(S\)) or Germination rate Index or index of velocity of germination or Emergence rate index (Allan, Vogel and Peterson; Erbach; Hsu and Nelson) or Germination index (AOSA) GermSpeed It is the rate of germination in terms of the total number of seeds that germinate in a time interval.
It is estimated as follows.
\[S = \sum_{i=1}^{k}\frac{N_{i}}{T_{i}}\]
Where, \(T_{i}\) is the time from the start of the experiment to the \(i\)th interval, \(N_{i}\) is the number of seeds germinated in the \(i\)th time interval (not the accumulated number, but the number corresponding to the \(i\)th interval), and \(k\) is the total number of time intervals.
Instead of germination counts, germination percentages may also be used for computation of speed of germination.
% time-1 or count time-1 Mixed Throneberry and Smith (1955); Maguire (1962); Allan et al. (1962); Kendrick and Frankland (1969); Bouton et al. (1976); Erbach (1982); AOSA (1983); Khandakar and Bradbeer (1983); Hsu and Nelson (1986); Bradbeer (1988); Wardle et al. (1991)
Speed of accumulated germination (\(S_{accumulated}\)) GermSpeedAccumulated It is the rate of germination in terms of the accumulated/cumulative total number of seeds that germinate in a time interval.
It is estimated as follows.
\[S_{accumulated} = \sum_{i=1}^{k}\frac{\sum_{j=1}^{i}N_{j}}{T_{i}}\]
Where, \(T_{i}\) is the time from the start of the experiment to the \(i\)th interval, \(\sum_{j=1}^{i}N_{j}\) is the cumuative/accumulated number of seeds germinated in the \(i\)th interval, and \(k\) is the total number of time intervals.
Instead of germination counts, germination percentages may also be used for computation of speed of germination.
% time-1 or count time-1 Mixed Bradbeer (1988); Wardle et al. (1991); Haugland and Brandsaeter (1996); Santana and Ranal (2004)
Corrected speed of germination or Corrected germination rate index (\(\hat{S}\)) GermSpeedCorrected It is computed as follows.
\[S_{corrected} = \frac{S}{FGP}\]
Where, \(S\) is the germination speed computed with germination percentage instead of counts and \(FGP\) is the final germination percentage or germinability.
It can also be computed from speed of accumulated germination (computed with germination percentage).
\[\hat{S}_{accumulated} = \frac{S_{accumulated}}{FGP}\]
Where, \(S_{accumulated}\) is the speed of accumulated germination computed with germination percentage instead of counts and \(FGP\) is the final germination percentage or germinability.
time-1 Mixed Evetts and Burnside (1972)
Weighted germination percentage (\(WGP\)) WeightGermPercent It is estimated as follows.
\[WGP = \frac{\sum_{i=1}^{k}(k-i+1)N_{i}}{k \times N} \times 100\]
Where, \(N_{i}\) is the number of seeds that germinated in the time interval \(i\) (not cumulative, but partial count), \(N\) is the total number of seeds tested, and \(k\) is the total number of time intervals.
Percentage (%) Mixed Reddy et al. (1985); Reddy (1978)
Mean germination percentage per unit time (\(\overline{GP}\)) MeanGermPercent It is estimated as follows.
\[\overline{GP} = \frac{GP}{T_{k}}\]
Where, \(GP\) is the final germination percentage, \(T_{k}\) is the time at the \(k\)th time interval, and \(k\) is the total number of time intervals required for final germination.
% time-1 Mixed Czabator (1962)
Number of seeds germinated per unit time \(\overline{N}\) MeanGermNumber It is estimated as follows.
\[\overline{N} = \frac{N_{g}}{T_{k}}\]
Where, \(N_{g}\) is the number of germinated seeds at the end of the germination test, \(T_{k}\) is the time at the \(k\)th time interval, and \(k\) is the total number of time intervals required for final germination.
count time-1 Mixed Khamassi et al. (2013)
Timson’s index [\(\sum 10\) (Ten summation), \(\sum 5\) or \(\sum 20\)] or Germination energy index (\(GEI\)) TimsonsIndex It is the progressive total of cumulative germination percentage recorded at specific intervals for a set period of time and is estimated in terms of cumulative germination percentage (\(G_{i}\)) as follows.
\[\Sigma k = \sum_{i=1}^{k}G_{i}\]
Where, \(G_{i}\) is the cumulative germination percentage in time interval \(i\), and \(k\) is the total number of time intervals.
It also estimated in terms of partial germination percentage as follows.
\[\Sigma k = \sum_{i=1}^{k}g_{i}(k-j)\]
Where, \(g_{i}\) is the germination (not cumulative, but partial germination) in time interval \(i\) (\(i\) varying from \(0\) to \(k\)), \(k\) is the total number of time intervals, and \(j = i - 1\).
Percentage (%) Mixed Grose and Zimmer (1958); Timson (1965); Lyon and Coffelt (1966); Chaudhary and Ghildyal (1970); Negm and Smith (1978); Brown and Mayer (1988); Baskin and Baskin (1998); Goodchild and Walker (1971)
Modified Timson’s index (\(\Sigma k_{mod}\)) (Labouriau) TimsonsIndex It is estimated as Timson’s index \(\Sigma k\) divided by the sum of partial germination percentages.
\[\Sigma k_{mod} = \frac{\Sigma k}{\sum_{i=1}^{k}g_{i}}\]
no unit Mixed Ranal and Santana (2006)
Modified Timson’s index (\(\Sigma k_{mod}\)) (Khan and Unger) TimsonsIndex It is estimated as Timson’s index (\(\Sigma k\)) divided by the total time period of germination (\(T_{k}\)).
\[\Sigma k_{mod} = \frac{\Sigma k}{T_{k}}\]
% time-1 Mixed Khan and Ungar (1984)
George’s index (\(GR\)) GermRateGeorge It is estimated as follows.
\[GR = \sum_{i=1}^{k}N_{i}K_{i}\]
Where \(N_{i}\) is the number of seeds germinated by \(i\)th interval and \(K_{i}\) is the number of intervals(eg. days) until the end of the test, and and \(k\) is the total number of time intervals.
count time Mixed George (1961); Tucker and Wright (1965); Nichols and Heydecker (1968);Chopra and Chaudhary (1980)
Germination Index (\(GI\)) (Melville) GermIndex It is estimated as follows.
\[GI = \sum_{i=1}^{k}\frac{\left | \left ( T_{k} - T_{i} \right ) N_{i}\right |}{N_{t}}\]
Where, \(T_{i}\) is the time from the start of the experiment to the \(i\)th interval (day for the example), \(N_{i}\) is the number of seeds germinated in the \(i\)th time interval (not the accumulated number, but the number corresponding to the \(i\)th interval), \(N_{t}\) is the total number of seeds used in the test, and \(k\) is the total number of time intervals.
time Mixed Melville et al. (1980)
Germination Index (\(GI_{mod}\)) (Melville; Santana and Ranal) GermIndex It is estimated as follows.
\[GI_{mod} = \sum_{i=1}^{k}\frac{\left | \left ( T_{k} - T_{i} \right ) N_{i}\right |}{N_{g}}\]
Where, \(T_{i}\) is the time from the start of the experiment to the \(i\)th interval (day for the example), \(N_{i}\) is the number of seeds germinated in the \(i\)th time interval (not the accumulated number, but the number corresponding to the \(i\)th interval), \(N_{g}\) is the total number of germinated seeds at the end of the test, and \(k\) is the total number of time intervals.
time Mixed Melville et al. (1980); Santana and Ranal (2004); Ranal and Santana (2006)
Emergence Rate Index (\(ERI\)) or Germination Rate Index (Shmueli and Goldberg) EmergenceRateIndex It is estimated as follows.
\[ERI = \sum_{i=i_{0}}^{k-1}N_{i}(k-i)\]
Where, \(N_{i}\) is the number of seeds germinated in the \(i\)th time interval (not the accumulated number, but the number corresponding to the \(i\)th interval), \(i_{0}\) is the time interval when emergence/germination started, and \(k\) is the total number of time intervals.
count Mixed Shmueli and Goldberg (1971)
Modified Emergence Rate Index (\(ERI_{mod}\)) or Modified Germination Rate Index (Shmueli and Goldberg; Santana and Ranal) EmergenceRateIndex It is estimated by dividing Emergence rate index (\(ERI\)) by total number of emerged seedlings (or germinated seeds).
\[ERI_{mod} = \frac{\sum_{i=i_{0}}^{k-1}N_{i}(k-i)}{N_{g}} = \frac{ERI}{N_{g}}\]
Where, \(N_{g}\) is the total number of germinated seeds at the end of the test, \(N_{i}\) is the number of seeds germinated in the \(i\)th time interval (not the accumulated number, but the number corresponding to the \(i\)th interval), \(i_{0}\) is the time interval when emergence/germination started, and \(k\) is the total number of time intervals.
no unit Mixed Shmueli and Goldberg (1971); Santana and Ranal (2004); Ranal and Santana (2006)
Emergence Rate Index (\(ERI\)) or Germination Rate Index (Bilbro & Wanjura) EmergenceRateIndex It is the estimated as follows.
\[ERI = \frac{\sum_{i=1}^{k}N_{i}}{\overline{T}} = \frac{N_{g}}{\overline{T}}\]
Where, \(N_{g}\) is the total number of germinated seeds at the end of the test, \(N_{i}\) is the number of seeds germinated in the \(i\)th time interval (not the accumulated number, but the number corresponding to the \(i\)th interval), and \(\overline{T}\) is the mean germination time or mean emergence time.
count time-1 Mixed Bilbro and Wanjura (1982)
Emergence Rate Index (\(ERI\)) or Germination Rate Index (Fakorede) EmergenceRateIndex It is estimated as follows.
\[ERI = \frac{\overline{T}}{FGP/100}\]
Where, \(\overline{T}\) is the Mean germination time and \(FGP\) is the final germination time.
time count-1 Mixed Fakorede and Ayoola (1980); Fakorede and Ojo (1981); Fakorede and Agbana (1983)
Peak value(\(PV\)) (Czabator) or Emergence Energy (\(EE\)) PeakValue It is the accumulated number of seeds germinated at the point on the germination curve at which the rate of germination starts to decrease. It is computed as the maximum quotient obtained by dividing successive cumulative germination values by the relevant incubation time.
\[PV = \max\left ( \frac{G_{1}}{T_{1}},\frac{G_{2}}{T_{2}},\cdots \frac{G_{k}}{T_{k}} \right )\]
Where, \(T_{i}\) is the time from the start of the experiment to the \(i\)th interval, \(G_{i}\) is the cumulative germination percentage in the \(i\)th time interval, and \(k\) is the total number of time intervals.
% time-1 Mixed Czabator (1962); Bonner (1967)
Germination value (\(GV\)) (Czabator) GermValue It is computed as follows.
\[GV = PV \times MDG\]
Where, \(PV\) is the peak value and \(MDG\) is the mean daily germination percentage from the onset of germination.
It can also be computed for other time intervals of successive germination counts, by replacing \(MDG\) with the mean germination percentage per unit time (\(\overline{GP}\)).
\(GV\) value can be modified (\(GV_{mod}\)), to consider the entire duration from the beginning of the test instead of just from the onset of germination.
%2 time-2 Mixed Czabator (1962); Brown and Mayer (1988)
Germination value (\(GV\)) (Diavanshir and Pourbiek) GermValue It is computed as follows.
\[GV = \frac{\sum DGS}{N} \times GP \times c\]
Where, \(DGS\) is the daily germination speed computed by dividing cumulative germination percentage by the number of days since the since the onset of germination, \(N\) is the frequency or number of DGS calculated during the test, \(GP\) is the germination percentage expressed over 100, and \(c\) is a constant. The value of \(c\) is decided on the basis of average daily speed of germination (\(\frac{\sum DGS}{N}\)). If it is less than 10, then \(c\) value of 10 can be used and if it is more than 10, then value of 7 or 8 can be used for \(c\).
\(GV\) value can be modified (\(GV_{mod}\)), to consider the entire duration from the beginning of the test instead of just from the onset of germination.
%2 time-1 Mixed Djavanshir and Pourbeik (1976); Brown and Mayer (1988)
Coefficient of uniformity of germination (\(CUG\)) CUGerm It is computed as follows.
\[CUG = \frac{\sum_{i=1}^{k}N_{i}}{\sum_{i=1}^{k}(\overline{T}-T_{i})^{2}N_{i}}\]
Where, \(\overline{T}\) is the the mean germination time, \(T_{i}\) is the time from the start of the experiment to the \(i\)th interval (day for the example), \(N_{i}\) is the number of seeds germinated in the \(i\)th time interval (not the accumulated number, but the number corresponding to the \(i\)th interval), and \(k\) is the total number of time intervals.
time-2 Germination unifromity Heydecker (1972); Bewley and Black (1994)
Coefficient of variation of the germination time (\(CV_{T}\)) CVGermTime It is estimated as follows.
\[CV_{T} = \sqrt{\frac{s_{T}^{2}}{\overline{T}}}\]
Where, \(s_{T}^{2}\) is the variance of germination time and \(\overline{T}\) is the mean germination time.
no unit Germination unifromity Gomes (1960); Ranal and Santana (2006)
Synchronization index (\(\overline{E}\)) or Uncertainty of the germination process (\(U\)) or informational entropy (\(H\)) GermUncertainty It is estimated as follows.
\[\overline{E} = -\sum_{i=1}^{k}f_{i}\log_{2}f_{i}\]
Where, \(f_{i}\) is the relative frequency of germination (\(f_{i}=\frac{N_{i}}{\sum_{i=1}^{k}N_{i}}\)), \(N_{i}\) is the number of seeds germinated on the \(i\)th time interval, and \(k\) is the total number of time intervals.
bit Germination synchrony Shannon (1948); Labouriau and Valadares (1976); Labouriau (1983b)
Synchrony of germination (\(Z\) index) GermSynchrony It is computed as follows.
\[Z=\frac{\sum_{i=1}^{k}C_{N_{i},2}}{C_{\Sigma N_{i},2}}\]
Where, \(C_{N_{i},2}\) is the partial combination of the two germinated seeds from among \(N_{i}\), the number of seeds germinated on the \(i\)th time interval (estimated as \(C_{N_{i},2}=\frac{N_{i}(N_{i}-1)}{2}\)), and \(C_{\Sigma N_{i},2}\) is the partial combination of the two germinated seeds from among the total number of seeds germinated at the final count, assuming that all seeds that germinated did so simultaneously.
no unit Germination synchrony Primack (1985); Ranal and Santana (2006)

Examples

GermPercent()

x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
y <- c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
z <- c(0, 0, 0, 0, 11, 11, 9, 7, 1, 0, 1, 0, 0, 0)
int <- 1:length(x)

# From partial germination counts
#----------------------------------------------------------------------------
GermPercent(germ.counts = x, total.seeds = 50)
[1] 80
PeakGermPercent(germ.counts = x, intervals = int, total.seeds = 50)
[1] 34
# For multiple peak germination times
PeakGermPercent(germ.counts = z, intervals = int, total.seeds = 50)
Warning in PeakGermPercent(germ.counts = z, intervals = int, total.seeds = 50):
Multiple peak germination times exist.
[1] 22
# From cumulative germination counts
#----------------------------------------------------------------------------
GermPercent(germ.counts = y, total.seeds = 50, partial = FALSE)
[1] 80
PeakGermPercent(germ.counts = y, intervals = int, total.seeds = 50,
                partial = FALSE)
[1] 34
# For multiple peak germination times
PeakGermPercent(germ.counts = cumsum(z), intervals = int, total.seeds = 50,
                partial = FALSE)
Warning in PeakGermPercent(germ.counts = cumsum(z), intervals = int,
total.seeds = 50, : Multiple peak germination times exist.
[1] 22
# From number of germinated seeds
#----------------------------------------------------------------------------
GermPercent(germinated.seeds = 40, total.seeds = 50)
[1] 80

FirstGermTime(), LastGermTime(), PeakGermTime(), TimeSpreadGerm()

x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
y <- c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
z <- c(0, 0, 0, 0, 11, 11, 9, 7, 1, 0, 1, 0, 0, 0)
int <- 1:length(x)

# From partial germination counts
#----------------------------------------------------------------------------
FirstGermTime(germ.counts = x, intervals = int)
[1] 5
LastGermTime(germ.counts = x, intervals = int)
[1] 11
TimeSpreadGerm(germ.counts = x, intervals = int)
[1] 6
PeakGermTime(germ.counts = x, intervals = int)
[1] 6
# For multiple peak germination times
PeakGermTime(germ.counts = z, intervals = int)
Warning in PeakGermTime(germ.counts = z, intervals = int): Multiple peak
germination times exist.
[1] 5 6
# From cumulative germination counts
#----------------------------------------------------------------------------
FirstGermTime(germ.counts = y, intervals = int, partial = FALSE)
[1] 5
LastGermTime(germ.counts = y, intervals = int, partial = FALSE)
[1] 11
TimeSpreadGerm(germ.counts = y, intervals = int, partial = FALSE)
[1] 6
PeakGermTime(germ.counts = y, intervals = int, partial = FALSE)
[1] 6
# For multiple peak germination time
PeakGermTime(germ.counts = cumsum(z), intervals = int, partial = FALSE)
Warning in PeakGermTime(germ.counts = cumsum(z), intervals = int, partial =
FALSE): Multiple peak germination times exist.
[1] 5 6

t50()

x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
y <- c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
int <- 1:length(x)

# From partial germination counts
#----------------------------------------------------------------------------
t50(germ.counts = x, intervals = int, method = "coolbear")
[1] 5.970588
t50(germ.counts = x, intervals = int, method = "farooq")
[1] 5.941176
# From cumulative germination counts
#----------------------------------------------------------------------------
t50(germ.counts = y, intervals = int, partial = FALSE, method = "coolbear")
[1] 5.970588
t50(germ.counts = y, intervals = int, partial = FALSE, method = "farooq")
[1] 5.941176

MeanGermTime(), VarGermTime(), SEGermTime(), CVGermTime()

x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
y <- c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
int <- 1:length(x)

# From partial germination counts
#----------------------------------------------------------------------------
MeanGermTime(germ.counts = x, intervals = int)
[1] 6.7
VarGermTime(germ.counts = x, intervals = int)
[1] 1.446154
SEGermTime(germ.counts = x, intervals = int)
[1] 0.1901416
CVGermTime(germ.counts = x, intervals = int)
[1] 0.1794868
# From cumulative germination counts
#----------------------------------------------------------------------------
MeanGermTime(germ.counts = y, intervals = int, partial = FALSE)
[1] 6.7
VarGermTime(germ.counts = y, intervals = int, partial = FALSE)
[1] 1.446154
SEGermTime(germ.counts = y, intervals = int, partial = FALSE)
[1] 0.1901416
CVGermTime(germ.counts = y, intervals = int, partial = FALSE)
[1] 0.1794868

MeanGermRate(), CVG(), VarGermRate(), SEGermRate(), GermRateRecip()

x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
y <- c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
int <- 1:length(x)

# From partial germination counts
#----------------------------------------------------------------------------
MeanGermRate(germ.counts = x, intervals = int)
[1] 0.1492537
CVG(germ.counts = x, intervals = int)
[1] 14.92537
VarGermRate(germ.counts = x, intervals = int)
[1] 0.0007176543
SEGermRate(germ.counts = x, intervals = int)
[1] 0.004235724
GermRateRecip(germ.counts = x, intervals = int, method = "coolbear")
[1] 0.1674877
GermRateRecip(germ.counts = x, intervals = int, method = "farooq")
[1] 0.1683168
# From cumulative germination counts
#----------------------------------------------------------------------------
MeanGermRate(germ.counts = y, intervals = int, partial = FALSE)
[1] 0.1492537
CVG(germ.counts = y, intervals = int, partial = FALSE)
[1] 14.92537
VarGermRate(germ.counts = y, intervals = int, partial = FALSE)
[1] 0.0007176543
SEGermRate(germ.counts = y, intervals = int, partial = FALSE)
[1] 0.004235724
GermRateRecip(germ.counts = y, intervals = int,
              method = "coolbear", partial = FALSE)
[1] 0.1674877
GermRateRecip(germ.counts = y, intervals = int,
              method = "farooq", partial = FALSE)
[1] 0.1683168

GermSpeed(), GermSpeedAccumulated(), GermSpeedCorrected()

x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
y <- c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
int <- 1:length(x)

# From partial germination counts
#----------------------------------------------------------------------------
GermSpeed(germ.counts = x, intervals = int)
[1] 6.138925
GermSpeedAccumulated(germ.counts = x, intervals = int)
[1] 34.61567
GermSpeedCorrected(germ.counts = x, intervals = int, total.seeds = 50,
                   method = "normal")
[1] 0.1534731
GermSpeedCorrected(germ.counts = x, intervals = int, total.seeds = 50,
                   method = "accumulated")
[1] 0.8653917
# From partial germination counts (with percentages instead of counts)
#----------------------------------------------------------------------------
GermSpeed(germ.counts = x, intervals = int,
          percent = TRUE, total.seeds = 50)
[1] 12.27785
GermSpeedAccumulated(germ.counts = x, intervals = int,
                     percent = TRUE, total.seeds = 50)
[1] 69.23134
# From cumulative germination counts
#----------------------------------------------------------------------------
GermSpeed(germ.counts = y, intervals = int, partial = FALSE)
[1] 6.138925
GermSpeedAccumulated(germ.counts = y, intervals = int, partial = FALSE)
[1] 34.61567
GermSpeedCorrected(germ.counts = y, intervals = int,
                   partial = FALSE, total.seeds = 50, method = "normal")
[1] 0.1534731
GermSpeedCorrected(germ.counts = y, intervals = int,
                   partial = FALSE, total.seeds = 50, method = "accumulated")
[1] 0.8653917
# From cumulative germination counts (with percentages instead of counts)
#----------------------------------------------------------------------------
GermSpeed(germ.counts = y, intervals = int, partial = FALSE,
          percent = TRUE, total.seeds = 50)
[1] 12.27785
GermSpeedAccumulated(germ.counts = y, intervals = int, partial = FALSE,
                     percent = TRUE, total.seeds = 50)
[1] 69.23134

WeightGermPercent()

x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
y <- c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
int <- 1:length(x)

# From partial germination counts
#----------------------------------------------------------------------------
WeightGermPercent(germ.counts = x, total.seeds = 50, intervals = int)
[1] 47.42857
# From cumulative germination counts
#----------------------------------------------------------------------------
WeightGermPercent(germ.counts = y, total.seeds = 50, intervals = int,
                  partial = FALSE)
[1] 47.42857

MeanGermPercent(), MeanGermNumber()

x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
y <- c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
int <- 1:length(x)

# From partial germination counts
#----------------------------------------------------------------------------
MeanGermPercent(germ.counts = x, total.seeds = 50, intervals = int)
[1] 5.714286
MeanGermNumber(germ.counts = x, intervals = int)
[1] 2.857143
# From cumulative germination counts
#----------------------------------------------------------------------------
MeanGermPercent(germ.counts = y, total.seeds = 50, intervals = int, partial = FALSE)
[1] 5.714286
MeanGermNumber(germ.counts = y, intervals = int, partial = FALSE)
[1] 2.857143
# From number of germinated seeds
#----------------------------------------------------------------------------
MeanGermPercent(germinated.seeds = 40, total.seeds = 50, intervals = int)
[1] 5.714286

TimsonsIndex(), GermRateGeorge()

x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
y <- c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
int <- 1:length(x)

# From partial germination counts
#----------------------------------------------------------------------------
# Without max specified
TimsonsIndex(germ.counts = x, intervals = int, total.seeds = 50)
[1] 664
TimsonsIndex(germ.counts = x, intervals = int, total.seeds = 50,
             modification = "none")
[1] 664
TimsonsIndex(germ.counts = x, intervals = int, total.seeds = 50,
             modification = "labouriau")
[1] 8.3
TimsonsIndex(germ.counts = x, intervals = int, total.seeds = 50,
             modification = "khanungar")
[1] 47.42857
GermRateGeorge(germ.counts = x, intervals = int)
[1] 332
# With max specified
TimsonsIndex(germ.counts = x, intervals = int, total.seeds = 50, max = 10)
[1] 344
TimsonsIndex(germ.counts = x, intervals = int, total.seeds = 50,
             max = 10, modification = "none")
[1] 344
TimsonsIndex(germ.counts = x, intervals = int, total.seeds = 50,
             max = 10, modification = "labouriau")
[1] 4.410256
TimsonsIndex(germ.counts = x, intervals = int, total.seeds = 50,
             max = 10, modification = "khanungar")
[1] 24.57143
GermRateGeorge(germ.counts = x, intervals = int, max = 10)
[1] 172
GermRateGeorge(germ.counts = x, intervals = int, max = 14)
[1] 332
# From cumulative germination counts
#----------------------------------------------------------------------------
# Without max specified
TimsonsIndex(germ.counts = y, intervals = int, partial = FALSE,
             total.seeds = 50)
[1] 664
TimsonsIndex(germ.counts = y, intervals = int, partial = FALSE,
             total.seeds = 50,
             modification = "none")
[1] 664
TimsonsIndex(germ.counts = y, intervals = int, partial = FALSE,
             total.seeds = 50,
             modification = "labouriau")
[1] 8.3
TimsonsIndex(germ.counts = y, intervals = int, partial = FALSE,
             total.seeds = 50,
             modification = "khanungar")
[1] 47.42857
GermRateGeorge(germ.counts = y, intervals = int, partial = FALSE)
[1] 332
# With max specified
TimsonsIndex(germ.counts = y, intervals = int, partial = FALSE,
             total.seeds = 50, max = 10)
[1] 344
TimsonsIndex(germ.counts = y, intervals = int, partial = FALSE,
             total.seeds = 50,
             max = 10, modification = "none")
[1] 344
TimsonsIndex(germ.counts = y, intervals = int, partial = FALSE,
             total.seeds = 50,
             max = 10, modification = "labouriau")
[1] 4.410256
TimsonsIndex(germ.counts = y, intervals = int, partial = FALSE,
             total.seeds = 50,
             max = 10, modification = "khanungar")
[1] 24.57143
GermRateGeorge(germ.counts = y, intervals = int, partial = FALSE,
               max = 10)
[1] 172
GermRateGeorge(germ.counts = y, intervals = int, partial = FALSE,
               max = 14)
[1] 332

GermIndex()

x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
y <- c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
int <- 1:length(x)

# From partial germination counts
#----------------------------------------------------------------------------
GermIndex(germ.counts = x, intervals = int, total.seeds = 50)
[1] 5.84
GermIndex(germ.counts = x, intervals = int, total.seeds = 50,
          modification = "none")
[1] 5.84
GermIndex(germ.counts = x, intervals = int, total.seeds = 50,
          modification = "santanaranal")
[1] 7.3
# From cumulative germination counts
#----------------------------------------------------------------------------
GermIndex(germ.counts = y, intervals = int, partial = FALSE,
          total.seeds = 50)
[1] 5.84
GermIndex(germ.counts = y, intervals = int, partial = FALSE,
          total.seeds = 50,
          modification = "none")
[1] 5.84
GermIndex(germ.counts = y, intervals = int, partial = FALSE,
          total.seeds = 50,
          modification = "santanaranal")
[1] 7.3

EmergenceRateIndex()

x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
y <- c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
int <- 1:length(x)

# From partial germination counts
#----------------------------------------------------------------------------
EmergenceRateIndex(germ.counts = x, intervals = int)
[1] 292
EmergenceRateIndex(germ.counts = x, intervals = int,
                   method = "shmueligoldberg")
[1] 292
EmergenceRateIndex(germ.counts = x, intervals = int,
                   method = "sgsantanaranal")
[1] 7.3
EmergenceRateIndex(germ.counts = x, intervals = int,
                   method = "bilbrowanjura")
[1] 5.970149
EmergenceRateIndex(germ.counts = x, intervals = int,
                   total.seeds = 50, method = "fakorede")
[1] 8.375
# From cumulative germination counts
#----------------------------------------------------------------------------
EmergenceRateIndex(germ.counts = y, intervals = int, partial = FALSE)
[1] 292
EmergenceRateIndex(germ.counts = y, intervals = int, partial = FALSE,
                   method = "shmueligoldberg")
[1] 292
EmergenceRateIndex(germ.counts = y, intervals = int, partial = FALSE,
                   method = "sgsantanaranal")
[1] 7.3
EmergenceRateIndex(germ.counts = y, intervals = int, partial = FALSE,
                   method = "bilbrowanjura")
[1] 5.970149
EmergenceRateIndex(germ.counts = y, intervals = int, partial = FALSE,
                   total.seeds = 50, method = "fakorede")
[1] 8.375

PeakValue(), GermValue()

x <- c(0, 0, 34, 40, 21, 10, 4, 5, 3, 5, 8, 7, 7, 6, 6, 4, 0, 2, 0, 2)
y <- c(0, 0, 34, 74, 95, 105, 109, 114, 117, 122, 130, 137, 144, 150,
      156, 160, 160, 162, 162, 164)
int <- 1:length(x)
total.seeds = 200

# From partial germination counts
#----------------------------------------------------------------------------
PeakValue(germ.counts = x, intervals = int, total.seeds = 200)
[1] 9.5
GermValue(germ.counts = x, intervals = int, total.seeds = 200,
          method = "czabator")
$`Germination Value`
[1] 38.95

[[2]]
   germ.counts intervals Cumulative.germ.counts Cumulative.germ.percent
3           34         3                     34                    17.0
4           40         4                     74                    37.0
5           21         5                     95                    47.5
6           10         6                    105                    52.5
7            4         7                    109                    54.5
8            5         8                    114                    57.0
9            3         9                    117                    58.5
10           5        10                    122                    61.0
11           8        11                    130                    65.0
12           7        12                    137                    68.5
13           7        13                    144                    72.0
14           6        14                    150                    75.0
15           6        15                    156                    78.0
16           4        16                    160                    80.0
17           0        17                    160                    80.0
18           2        18                    162                    81.0
19           0        19                    162                    81.0
20           2        20                    164                    82.0
        DGS
3  5.666667
4  9.250000
5  9.500000
6  8.750000
7  7.785714
8  7.125000
9  6.500000
10 6.100000
11 5.909091
12 5.708333
13 5.538462
14 5.357143
15 5.200000
16 5.000000
17 4.705882
18 4.500000
19 4.263158
20 4.100000
GermValue(germ.counts = x, intervals = int, total.seeds = 200,
          method = "dp", k = 10)
$`Germination Value`
[1] 53.36595

[[2]]
   germ.counts intervals Cumulative.germ.counts Cumulative.germ.percent
3           34         3                     34                    17.0
4           40         4                     74                    37.0
5           21         5                     95                    47.5
6           10         6                    105                    52.5
7            4         7                    109                    54.5
8            5         8                    114                    57.0
9            3         9                    117                    58.5
10           5        10                    122                    61.0
11           8        11                    130                    65.0
12           7        12                    137                    68.5
13           7        13                    144                    72.0
14           6        14                    150                    75.0
15           6        15                    156                    78.0
16           4        16                    160                    80.0
17           0        17                    160                    80.0
18           2        18                    162                    81.0
19           0        19                    162                    81.0
20           2        20                    164                    82.0
        DGS SumDGSbyN        GV
3  5.666667  5.666667  9.633333
4  9.250000  7.458333 27.595833
5  9.500000  8.138889 38.659722
6  8.750000  8.291667 43.531250
7  7.785714  8.190476 44.638095
8  7.125000  8.012897 45.673512
9  6.500000  7.796769 45.611097
10 6.100000  7.584673 46.266503
11 5.909091  7.398497 48.090230
12 5.708333  7.229481 49.521942
13 5.538462  7.075752 50.945411
14 5.357143  6.932534 51.994006
15 5.200000  6.799262 53.034246
16 5.000000  6.670744 53.365948
17 4.705882  6.539753 52.318022
18 4.500000  6.412268 51.939373
19 4.263158  6.285850 50.915385
20 4.100000  6.164414 50.548194

$testend
[1] 16
GermValue(germ.counts = x, intervals = int, total.seeds = 200,
          method = "czabator", from.onset = FALSE)
$`Germination Value`
[1] 38.95

[[2]]
   germ.counts intervals Cumulative.germ.counts Cumulative.germ.percent
1            0         1                      0                     0.0
2            0         2                      0                     0.0
3           34         3                     34                    17.0
4           40         4                     74                    37.0
5           21         5                     95                    47.5
6           10         6                    105                    52.5
7            4         7                    109                    54.5
8            5         8                    114                    57.0
9            3         9                    117                    58.5
10           5        10                    122                    61.0
11           8        11                    130                    65.0
12           7        12                    137                    68.5
13           7        13                    144                    72.0
14           6        14                    150                    75.0
15           6        15                    156                    78.0
16           4        16                    160                    80.0
17           0        17                    160                    80.0
18           2        18                    162                    81.0
19           0        19                    162                    81.0
20           2        20                    164                    82.0
        DGS
1  0.000000
2  0.000000
3  5.666667
4  9.250000
5  9.500000
6  8.750000
7  7.785714
8  7.125000
9  6.500000
10 6.100000
11 5.909091
12 5.708333
13 5.538462
14 5.357143
15 5.200000
16 5.000000
17 4.705882
18 4.500000
19 4.263158
20 4.100000
GermValue(germ.counts = x, intervals = int, total.seeds = 200,
          method = "dp", k = 10, from.onset = FALSE)
$`Germination Value`
[1] 46.6952

[[2]]
   germ.counts intervals Cumulative.germ.counts Cumulative.germ.percent
1            0         1                      0                     0.0
2            0         2                      0                     0.0
3           34         3                     34                    17.0
4           40         4                     74                    37.0
5           21         5                     95                    47.5
6           10         6                    105                    52.5
7            4         7                    109                    54.5
8            5         8                    114                    57.0
9            3         9                    117                    58.5
10           5        10                    122                    61.0
11           8        11                    130                    65.0
12           7        12                    137                    68.5
13           7        13                    144                    72.0
14           6        14                    150                    75.0
15           6        15                    156                    78.0
16           4        16                    160                    80.0
17           0        17                    160                    80.0
18           2        18                    162                    81.0
19           0        19                    162                    81.0
20           2        20                    164                    82.0
        DGS SumDGSbyN        GV
1  0.000000  0.000000  0.000000
2  0.000000  0.000000  0.000000
3  5.666667  1.888889  3.211111
4  9.250000  3.729167 13.797917
5  9.500000  4.883333 23.195833
6  8.750000  5.527778 29.020833
7  7.785714  5.850340 31.884354
8  7.125000  6.009673 34.255134
9  6.500000  6.064153 35.475298
10 6.100000  6.067738 37.013202
11 5.909091  6.053316 39.346552
12 5.708333  6.024567 41.268285
13 5.538462  5.987174 43.107655
14 5.357143  5.942172 44.566291
15 5.200000  5.892694 45.963013
16 5.000000  5.836901 46.695205
17 4.705882  5.770370 46.162961
18 4.500000  5.699794 46.168331
19 4.263158  5.624182 45.555871
20 4.100000  5.547972 45.493374

$testend
[1] 16
# From cumulative germination counts
#----------------------------------------------------------------------------
PeakValue(germ.counts = y, interval = int, total.seeds = 200,
          partial = FALSE)
[1] 9.5
GermValue(germ.counts = y, intervals = int, total.seeds = 200,
          partial = FALSE, method = "czabator")
$`Germination Value`
[1] 38.95

[[2]]
   germ.counts intervals Cumulative.germ.counts Cumulative.germ.percent
3           34         3                     34                    17.0
4           40         4                     74                    37.0
5           21         5                     95                    47.5
6           10         6                    105                    52.5
7            4         7                    109                    54.5
8            5         8                    114                    57.0
9            3         9                    117                    58.5
10           5        10                    122                    61.0
11           8        11                    130                    65.0
12           7        12                    137                    68.5
13           7        13                    144                    72.0
14           6        14                    150                    75.0
15           6        15                    156                    78.0
16           4        16                    160                    80.0
17           0        17                    160                    80.0
18           2        18                    162                    81.0
19           0        19                    162                    81.0
20           2        20                    164                    82.0
        DGS
3  5.666667
4  9.250000
5  9.500000
6  8.750000
7  7.785714
8  7.125000
9  6.500000
10 6.100000
11 5.909091
12 5.708333
13 5.538462
14 5.357143
15 5.200000
16 5.000000
17 4.705882
18 4.500000
19 4.263158
20 4.100000
GermValue(germ.counts = y, intervals = int, total.seeds = 200,
          partial = FALSE, method = "dp", k = 10)
$`Germination Value`
[1] 53.36595

[[2]]
   germ.counts intervals Cumulative.germ.counts Cumulative.germ.percent
3           34         3                     34                    17.0
4           40         4                     74                    37.0
5           21         5                     95                    47.5
6           10         6                    105                    52.5
7            4         7                    109                    54.5
8            5         8                    114                    57.0
9            3         9                    117                    58.5
10           5        10                    122                    61.0
11           8        11                    130                    65.0
12           7        12                    137                    68.5
13           7        13                    144                    72.0
14           6        14                    150                    75.0
15           6        15                    156                    78.0
16           4        16                    160                    80.0
17           0        17                    160                    80.0
18           2        18                    162                    81.0
19           0        19                    162                    81.0
20           2        20                    164                    82.0
        DGS SumDGSbyN        GV
3  5.666667  5.666667  9.633333
4  9.250000  7.458333 27.595833
5  9.500000  8.138889 38.659722
6  8.750000  8.291667 43.531250
7  7.785714  8.190476 44.638095
8  7.125000  8.012897 45.673512
9  6.500000  7.796769 45.611097
10 6.100000  7.584673 46.266503
11 5.909091  7.398497 48.090230
12 5.708333  7.229481 49.521942
13 5.538462  7.075752 50.945411
14 5.357143  6.932534 51.994006
15 5.200000  6.799262 53.034246
16 5.000000  6.670744 53.365948
17 4.705882  6.539753 52.318022
18 4.500000  6.412268 51.939373
19 4.263158  6.285850 50.915385
20 4.100000  6.164414 50.548194

$testend
[1] 16
GermValue(germ.counts = y, intervals = int, total.seeds = 200,
          partial = FALSE, method = "czabator", from.onset = FALSE)
$`Germination Value`
[1] 38.95

[[2]]
   germ.counts intervals Cumulative.germ.counts Cumulative.germ.percent
1            0         1                      0                     0.0
2            0         2                      0                     0.0
3           34         3                     34                    17.0
4           40         4                     74                    37.0
5           21         5                     95                    47.5
6           10         6                    105                    52.5
7            4         7                    109                    54.5
8            5         8                    114                    57.0
9            3         9                    117                    58.5
10           5        10                    122                    61.0
11           8        11                    130                    65.0
12           7        12                    137                    68.5
13           7        13                    144                    72.0
14           6        14                    150                    75.0
15           6        15                    156                    78.0
16           4        16                    160                    80.0
17           0        17                    160                    80.0
18           2        18                    162                    81.0
19           0        19                    162                    81.0
20           2        20                    164                    82.0
        DGS
1  0.000000
2  0.000000
3  5.666667
4  9.250000
5  9.500000
6  8.750000
7  7.785714
8  7.125000
9  6.500000
10 6.100000
11 5.909091
12 5.708333
13 5.538462
14 5.357143
15 5.200000
16 5.000000
17 4.705882
18 4.500000
19 4.263158
20 4.100000
GermValue(germ.counts = y, intervals = int, total.seeds = 200,
          partial = FALSE, method = "dp", k = 10, from.onset = FALSE)
$`Germination Value`
[1] 46.6952

[[2]]
   germ.counts intervals Cumulative.germ.counts Cumulative.germ.percent
1            0         1                      0                     0.0
2            0         2                      0                     0.0
3           34         3                     34                    17.0
4           40         4                     74                    37.0
5           21         5                     95                    47.5
6           10         6                    105                    52.5
7            4         7                    109                    54.5
8            5         8                    114                    57.0
9            3         9                    117                    58.5
10           5        10                    122                    61.0
11           8        11                    130                    65.0
12           7        12                    137                    68.5
13           7        13                    144                    72.0
14           6        14                    150                    75.0
15           6        15                    156                    78.0
16           4        16                    160                    80.0
17           0        17                    160                    80.0
18           2        18                    162                    81.0
19           0        19                    162                    81.0
20           2        20                    164                    82.0
        DGS SumDGSbyN        GV
1  0.000000  0.000000  0.000000
2  0.000000  0.000000  0.000000
3  5.666667  1.888889  3.211111
4  9.250000  3.729167 13.797917
5  9.500000  4.883333 23.195833
6  8.750000  5.527778 29.020833
7  7.785714  5.850340 31.884354
8  7.125000  6.009673 34.255134
9  6.500000  6.064153 35.475298
10 6.100000  6.067738 37.013202
11 5.909091  6.053316 39.346552
12 5.708333  6.024567 41.268285
13 5.538462  5.987174 43.107655
14 5.357143  5.942172 44.566291
15 5.200000  5.892694 45.963013
16 5.000000  5.836901 46.695205
17 4.705882  5.770370 46.162961
18 4.500000  5.699794 46.168331
19 4.263158  5.624182 45.555871
20 4.100000  5.547972 45.493374

$testend
[1] 16

CUGerm()

x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
y <- c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
int <- 1:length(x)

# From partial germination counts
#----------------------------------------------------------------------------
CUGerm(germ.counts = x, intervals = int)
[1] 0.7092199
# From cumulative germination counts
#----------------------------------------------------------------------------
CUGerm(germ.counts = y, intervals = int, partial = FALSE)
[1] 0.7092199

GermSynchrony(), GermUncertainty()

x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
y <- c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
int <- 1:length(x)

# From partial germination counts
#----------------------------------------------------------------------------
GermSynchrony(germ.counts = x, intervals = int)
[1] 0.2666667
GermUncertainty(germ.counts = x, intervals = int)
[1] 2.062987
# From cumulative germination counts
#----------------------------------------------------------------------------
GermSynchrony(germ.counts = y, intervals = int, partial = FALSE)
[1] 0.2666667
GermUncertainty(germ.counts = y, intervals = int, partial = FALSE)
[1] 2.062987

Non-linear regression analysis

Several mathematical functions have been used to fit the cumulative germination count data and describe the germination process by non-linear regression analysis. They include functions such as Richard’s, Weibull, logistic, log-logistic, gaussian, four-parameter hill function etc. Currently germinationmetrics implements the four-parameter hill function to fit the count data and computed various associated metrics.

Four-parameter hill function

The four-parameter hill function defined as follows (El-Kassaby et al., 2008).

\[ f(x) = y = y_0 + \frac{ax^b}{x^b+c^b} \] Where, \(y\) is the cumulative germination percentage at time \(x\), \(y_{0}\) is the intercept on the y axis, \(a\) is the asymptote, \(b\) is a mathematical parameter controlling the shape and steepness of the germination curve and \(c\) is the “half-maximal activation level”.

this function can also be be reparameterized by substituting \(b\) with \(e^{\beta}\) to constraint \(b\) to positive values only.

\[ y = y_{0}+\frac{ax^{e^{\beta}}}{c^{e^{\beta}}+x^{e^{\beta}}} \] Where, \(b = e^{\beta}\) and \(\beta = \log_{e}(b)\).

The details of various parameters that are computed from this function are given in Table 4.

Table 4 Germination parameters estimated from the four-parameter hill function.

Germination parameters Details Unit Measures
y intercept (\(y_{0}\)) The intercept on the y axis.
Asymptote (\(a\)) It is the maximum cumulative germination percentage, which is equivalent to germination capacity. % Germination capacity
Shape and steepness (\(b\)) Mathematical parameter controlling the shape and steepness of the germination curve. The larger the \(b\) , the steeper the rise toward the asymptote \(a\), and the shorter the time between germination onset and maximum germination. Germination rate
Half-maximal activation level (\(c\)) Time required for 50% of viable seeds to germinate. time Germination time
\(lag\) It is the time at germination onset and is computed by solving four-parameter hill function after setting y to 0 as follows.
\[lag = b\sqrt{\frac{-y_{0}c^{b}}{a + y_{0}}}\]
time Germination time
\(D_{lag-50}\) The duration between the time at germination onset (\(lag\)) and that at 50% germination (\(c\)). time Germination time
\(t_{50_{total}}\) Time required for 50% of total seeds to germinate. time Germination time
\(t_{50_{germinated}}\) Time required for 50% of viable/germinated seeds to germinate time Germination time
\(t_{x_{total}}\) Time required for \(x\)% of total seeds to germinate. time Germination time
\(t_{x_{germinated}}\) Time required for \(x\)% of viable/germinated seeds to germinate time Germination time
Uniformity (\(U_{t_{max}-t_{min}}\)) It is the time interval between the percentages of viable seeds specified in the arguments umin and umin to germinate. time Germination time
Time at maximum germination rate (\(TMGR\)) The partial derivative of the four-parameter hill function gives the instantaneous rate of germination (\(s\)) as follows.
\[s = \frac{\partial y}{\partial x} = \frac{abc^{b}x^{b-1}}{(c^{b}+x^{b})^{2}}\]
From this function for instantaneous rate of germination, \(TMGR\) can be estimated as follows.
\[TMGR = b \sqrt{\frac{c^{b}(b-1)}{b+1}}\]
It represents the point in time when the instantaneous rate of germination starts to decline.
time Germination time
Area under the curve (\(AUC\)) It is obtained by integration of the fitted curve between time 0 and time specified in the argument tmax. Mixed
\(MGT\) Calculated by integration of the fitted curve and proper normalisation. time Germination time
\(Skewness\) It is computed as follows.
\[\frac{MGT}{t_{50_{germinated}}}\]

Examples

FourPHFfit()

x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
y <- c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
int <- 1:length(x)
total.seeds = 50

# From partial germination counts
#----------------------------------------------------------------------------
FourPHFfit(germ.counts = x, intervals = int, total.seeds = 50, tmax = 20)
$data
   gp csgp intervals
1   0    0         1
2   0    0         2
3   0    0         3
4   0    0         4
5   8    8         5
6  34   42         6
7  20   62         7
8  14   76         8
9   2   78         9
10  0   78        10
11  2   80        11
12  0   80        12
13  0   80        13
14  0   80        14

$Parameters
  term estimate  std.error statistic      p.value
1  bta 2.290709 0.05602634  40.88628 2.965932e-14
2    c 6.034954 0.03872162 155.85488 3.270089e-21

$Fit
    sigma isConv       finTol    logLik      AIC      BIC deviance df.residual
1 1.61522   TRUE 2.852829e-12 -25.49868 56.99736 58.91453 31.30723          12
  nobs
1   14

$a
[1] 80

$b
[1] 9.881937

$c
[1] 6.034954

$y0
[1] 0

$lag
[1] 0

$Dlag50
[1] 6.034954

$t50.total
[1] 6.355121

$txp.total
      10       60 
4.956264 6.744598 

$t50.Germinated
[1] 6.034954

$txp.Germinated
      10       60 
4.831807 6.287724 

$Uniformity
        90         10 uniformity 
  7.537690   4.831807   2.705882 

$TMGR
[1] 5.912194

$AUC
[1] 1108.976

$MGT
[1] 6.632252

$Skewness
[1] 1.098973

$msg
[1] "#1. success "

$isConv
[1] TRUE

$model
Nonlinear regression model
  model: csgp ~ FourPHF_fixa_fixy0(x = intervals, a = max(csgp), bta,     c)
   data: data
  bta     c 
2.291 6.035 
 residual sum-of-squares: 31.31

Algorithm: multifit/levenberg-marquardt, (scaling: levenberg, solver: qr)

Number of iterations to convergence: 8 
Achieved convergence tolerance: 2.853e-12

attr(,"class")
[1] "FourPHFfit" "list"      
# From cumulative germination counts
#----------------------------------------------------------------------------
FourPHFfit(germ.counts = y, intervals = int, total.seeds = 50, tmax = 20,
           partial = FALSE)
$data
   gp csgp intervals
1   0    0         1
2   0    0         2
3   0    0         3
4   0    0         4
5   8    8         5
6  34   42         6
7  20   62         7
8  14   76         8
9   2   78         9
10  0   78        10
11  2   80        11
12  0   80        12
13  0   80        13
14  0   80        14

$Parameters
  term estimate  std.error statistic      p.value
1  bta 2.290709 0.05602634  40.88628 2.965932e-14
2    c 6.034954 0.03872162 155.85488 3.270089e-21

$Fit
    sigma isConv       finTol    logLik      AIC      BIC deviance df.residual
1 1.61522   TRUE 2.852829e-12 -25.49868 56.99736 58.91453 31.30723          12
  nobs
1   14

$a
[1] 80

$b
[1] 9.881937

$c
[1] 6.034954

$y0
[1] 0

$lag
[1] 0

$Dlag50
[1] 6.034954

$t50.total
[1] 6.355121

$txp.total
      10       60 
4.956264 6.744598 

$t50.Germinated
[1] 6.034954

$txp.Germinated
      10       60 
4.831807 6.287724 

$Uniformity
        90         10 uniformity 
  7.537690   4.831807   2.705882 

$TMGR
[1] 5.912194

$AUC
[1] 1108.976

$MGT
[1] 6.632252

$Skewness
[1] 1.098973

$msg
[1] "#1. success "

$isConv
[1] TRUE

$model
Nonlinear regression model
  model: csgp ~ FourPHF_fixa_fixy0(x = intervals, a = max(csgp), bta,     c)
   data: data
  bta     c 
2.291 6.035 
 residual sum-of-squares: 31.31

Algorithm: multifit/levenberg-marquardt, (scaling: levenberg, solver: qr)

Number of iterations to convergence: 8 
Achieved convergence tolerance: 2.853e-12

attr(,"class")
[1] "FourPHFfit" "list"      
x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
y <- c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
int <- 1:length(x)
total.seeds = 50

# From partial germination counts
#----------------------------------------------------------------------------
fit1 <- FourPHFfit(germ.counts = x, intervals = int,
                   total.seeds = 50, tmax = 20)

# From cumulative germination counts
#----------------------------------------------------------------------------
fit2 <- FourPHFfit(germ.counts = y, intervals = int,
                   total.seeds = 50, tmax = 20, partial = FALSE)

# Default plots
plot(fit1)
Warning in geom_segment(aes(x = UfmMin, xend = UfmMax, y = ypos2, yend = ypos2), : 
[1m
[22mAll aesthetics have length 1, but the data has 14 rows.

[36mℹ
[39m Did you mean to use `annotate()`?
Warning in geom_segment(aes(x = UfmMax, xend = UfmMin, y = ypos2, yend = ypos2), : 
[1m
[22mAll aesthetics have length 1, but the data has 14 rows.

[36mℹ
[39m Did you mean to use `annotate()`?

plot(fit2)
Warning in geom_segment(aes(x = UfmMin, xend = UfmMax, y = ypos2, yend = ypos2), : 
[1m
[22mAll aesthetics have length 1, but the data has 14 rows.

[36mℹ
[39m Did you mean to use `annotate()`?

[1m
[22mAll aesthetics have length 1, but the data has 14 rows.

[36mℹ
[39m Did you mean to use `annotate()`?

# No labels
plot(fit1, plotlabels = FALSE)
Warning in geom_segment(aes(x = UfmMin, xend = UfmMax, y = ypos2, yend = ypos2), : 
[1m
[22mAll aesthetics have length 1, but the data has 14 rows.

[36mℹ
[39m Did you mean to use `annotate()`?

[1m
[22mAll aesthetics have length 1, but the data has 14 rows.

[36mℹ
[39m Did you mean to use `annotate()`?

plot(fit2, plotlabels = FALSE)
Warning in geom_segment(aes(x = UfmMin, xend = UfmMax, y = ypos2, yend = ypos2), : 
[1m
[22mAll aesthetics have length 1, but the data has 14 rows.

[36mℹ
[39m Did you mean to use `annotate()`?

[1m
[22mAll aesthetics have length 1, but the data has 14 rows.

[36mℹ
[39m Did you mean to use `annotate()`?

# Only the FPHF curve
plot(fit1, rog = FALSE, t50.total = FALSE, t50.germ = FALSE,
     tmgr = FALSE, mgt = FALSE, uniformity = FALSE)

plot(fit2, rog = FALSE, t50.total = FALSE, t50.germ = FALSE,
     tmgr = FALSE, mgt = FALSE, uniformity = FALSE)

# Without y axis limits adjustment
plot(fit1, limits = FALSE)
Warning in geom_segment(aes(x = UfmMin, xend = UfmMax, y = ypos2, yend = ypos2), : 
[1m
[22mAll aesthetics have length 1, but the data has 14 rows.

[36mℹ
[39m Did you mean to use `annotate()`?

[1m
[22mAll aesthetics have length 1, but the data has 14 rows.

[36mℹ
[39m Did you mean to use `annotate()`?

plot(fit2, limits = FALSE)
Warning in geom_segment(aes(x = UfmMin, xend = UfmMax, y = ypos2, yend = ypos2), : 
[1m
[22mAll aesthetics have length 1, but the data has 14 rows.

[36mℹ
[39m Did you mean to use `annotate()`?

[1m
[22mAll aesthetics have length 1, but the data has 14 rows.

[36mℹ
[39m Did you mean to use `annotate()`?

Wrapper functions

Wrapper functions germination.indices() and FourPHFfit.bulk() are available in the package for computing results for multiple samples in batch from a data frame of germination counts recorded at specific time intervals.

germination.indices()

This wrapper function can be used to compute several germination indices simultaneously for multiple samples in batch.

data(gcdata)

counts.per.intervals <- c("Day01", "Day02", "Day03", "Day04", "Day05",
                          "Day06", "Day07", "Day08", "Day09", "Day10",
                          "Day11", "Day12", "Day13", "Day14")
germination.indices(gcdata, total.seeds.col = "Total Seeds",
                    counts.intervals.cols = counts.per.intervals,
                    intervals = 1:14, partial = TRUE, max.int = 5)
   Genotype Rep Day01 Day02 Day03 Day04 Day05 Day06 Day07 Day08 Day09 Day10
1        G1   1     0     0     0     0     4    17    10     7     1     0
2        G2   1     0     0     0     1     3    15    13     6     2     1
3        G3   1     0     0     0     2     3    18     9     8     2     1
4        G4   1     0     0     0     0     4    19    12     6     2     1
5        G5   1     0     0     0     0     5    20    12     8     1     0
6        G1   2     0     0     0     0     3    21    11     7     1     1
7        G2   2     0     0     0     0     4    18    11     7     1     0
8        G3   2     0     0     0     1     3    14    12     6     2     1
9        G4   2     0     0     0     1     3    19    10     8     1     1
10       G5   2     0     0     0     0     4    18    13     6     2     1
11       G1   3     0     0     0     0     5    21    11     8     1     0
12       G2   3     0     0     0     0     3    20    10     7     1     1
13       G3   3     0     0     0     0     4    19    12     8     1     1
14       G4   3     0     0     0     0     3    21    11     6     1     0
15       G5   3     0     0     0     0     4    17    10     8     1     1
   Day11 Day12 Day13 Day14 Total Seeds GermPercent PeakGermPercent
1      1     0     0     0          50    80.00000        34.00000
2      0     1     0     0          51    82.35294        29.41176
3      1     1     0     0          48    93.75000        37.50000
4      1     1     0     0          51    90.19608        37.25490
5      0     1     1     0          50    96.00000        40.00000
6      1     1     0     0          49    93.87755        42.85714
7      1     0     0     0          48    87.50000        37.50000
8      0     1     0     0          47    85.10638        29.78723
9      1     1     0     0          52    86.53846        36.53846
10     0     1     0     0          50    90.00000        36.00000
11     0     1     1     0          51    94.11765        41.17647
12     1     1     0     0          51    86.27451        39.21569
13     0     1     1     0          49    95.91837        38.77551
14     1     1     0     0          48    91.66667        43.75000
15     1     0     0     0          48    87.50000        35.41667
   FirstGermTime LastGermTime PeakGermTime TimeSpreadGerm t50_Coolbear
1              5           11            6              6     5.970588
2              4           12            6              8     6.192308
3              4           12            6              8     6.000000
4              5           12            6              7     6.041667
5              5           13            6              8     5.975000
6              5           12            6              7     5.976190
7              5           11            6              6     5.972222
8              4           12            6              8     6.208333
9              4           12            6              8     6.000000
10             5           12            6              7     6.076923
11             5           13            6              8     5.928571
12             5           12            6              7     5.975000
13             5           13            6              8     6.083333
14             5           12            6              7     5.928571
15             5           11            6              6     6.050000
   t50_Farooq MeanGermTime VarGermTime SEGermTime CVGermTime MeanGermRate
1    5.941176     6.700000    1.446154  0.1901416  0.1794868    0.1492537
2    6.153846     6.857143    2.027875  0.2197333  0.2076717    0.1458333
3    5.972222     6.866667    2.572727  0.2391061  0.2335882    0.1456311
4    6.000000     6.891304    2.187923  0.2180907  0.2146419    0.1451104
5    5.950000     6.812500    2.368351  0.2221275  0.2259002    0.1467890
6    5.952381     6.869565    2.071498  0.2122088  0.2095140    0.1455696
7    5.944444     6.690476    1.389663  0.1818989  0.1761967    0.1494662
8    6.166667     6.875000    2.112179  0.2297923  0.2113940    0.1454545
9    5.973684     6.866667    2.300000  0.2260777  0.2208604    0.1456311
10   6.038462     6.822222    1.831313  0.2017321  0.1983606    0.1465798
11   5.904762     6.791667    2.381206  0.2227295  0.2272072    0.1472393
12   5.950000     6.886364    2.149577  0.2210295  0.2129053    0.1452145
13   6.041667     6.936170    2.539315  0.2324392  0.2297410    0.1441718
14   5.904762     6.772727    1.900634  0.2078370  0.2035568    0.1476510
15   6.000000     6.809524    1.670151  0.1994129  0.1897847    0.1468531
    VarGermRate  SEGermRate      CVG GermRateRecip_Coolbear
1  0.0007176543 0.004235724 14.92537              0.1674877
2  0.0009172090 0.004673148 14.58333              0.1614907
3  0.0011572039 0.005071059 14.56311              0.1666667
4  0.0009701218 0.004592342 14.51104              0.1655172
5  0.0010995627 0.004786184 14.67890              0.1673640
6  0.0009301809 0.004496813 14.55696              0.1673307
7  0.0006935558 0.004063648 14.94662              0.1674419
8  0.0009454531 0.004861721 14.54545              0.1610738
9  0.0010345321 0.004794747 14.56311              0.1666667
10 0.0008453940 0.004334343 14.65798              0.1645570
11 0.0011191581 0.004828643 14.72393              0.1686747
12 0.0009558577 0.004660905 14.52145              0.1673640
13 0.0010970785 0.004831366 14.41718              0.1643836
14 0.0009033254 0.004531018 14.76510              0.1686747
15 0.0007767634 0.004300508 14.68531              0.1652893
   GermRateRecip_Farooq GermSpeed_Count GermSpeed_Percent
1             0.1683168        6.138925          12.27785
2             0.1625000        6.362698          12.47588
3             0.1674419        6.882179          14.33787
4             0.1666667        6.927417          13.58317
5             0.1680672        7.318987          14.63797
6             0.1680000        6.931782          14.14649
7             0.1682243        6.448449          13.43427
8             0.1621622        6.053175          12.87909
9             0.1674009        6.830592          13.13575
10            0.1656051        6.812698          13.62540
11            0.1693548        7.342796          14.39764
12            0.1680672        6.622258          12.98482
13            0.1655172        7.052320          14.39249
14            0.1693548        6.706782          13.97246
15            0.1666667        6.363925          13.25818
   GermSpeedAccumulated_Count GermSpeedAccumulated_Percent
1                    34.61567                     69.23134
2                    35.54058                     69.68741
3                    38.29725                     79.78594
4                    38.68453                     75.85202
5                    41.00786                     82.01571
6                    38.77620                     79.13509
7                    36.38546                     75.80304
8                    33.77079                     71.85275
9                    38.11511                     73.29829
10                   38.19527                     76.39054
11                   41.17452                     80.73436
12                   37.00640                     72.56158
13                   39.29399                     80.19182
14                   37.69490                     78.53103
15                   35.69697                     74.36868
   GermSpeedCorrected_Normal GermSpeedCorrected_Accumulated WeightGermPercent
1                  0.1534731                      0.8653917          47.42857
2                  0.1514928                      0.8462043          47.89916
3                  0.1529373                      0.8510501          54.46429
4                  0.1505960                      0.8409680          52.24090
5                  0.1524789                      0.8543303          56.14286
6                  0.1506909                      0.8429608          54.51895
7                  0.1535345                      0.8663205          51.93452
8                  0.1513294                      0.8442698          49.39210
9                  0.1517909                      0.8470024          50.27473
10                 0.1513933                      0.8487837          52.57143
11                 0.1529749                      0.8578026          55.18207
12                 0.1505059                      0.8410547          50.00000
13                 0.1500494                      0.8360424          55.24781
14                 0.1524269                      0.8567022          53.86905
15                 0.1515220                      0.8499278          51.19048
   MeanGermPercent MeanGermNumber TimsonsIndex TimsonsIndex_Labouriau
1         5.714286       2.857143     8.000000                   1.00
2         5.882353       3.000000     9.803922                   1.25
3         6.696429       3.214286    14.583333                   1.40
4         6.442577       3.285714     7.843137                   1.00
5         6.857143       3.428571    10.000000                   1.00
6         6.705539       3.285714     6.122449                   1.00
7         6.250000       3.000000     8.333333                   1.00
8         6.079027       2.857143    10.638298                   1.25
9         6.181319       3.214286     9.615385                   1.25
10        6.428571       3.214286     8.000000                   1.00
11        6.722689       3.428571     9.803922                   1.00
12        6.162465       3.142857     5.882353                   1.00
13        6.851312       3.357143     8.163265                   1.00
14        6.547619       3.142857     6.250000                   1.00
15        6.250000       3.000000     8.333333                   1.00
   TimsonsIndex_KhanUngar GermRateGeorge GermIndex GermIndex_mod
1               0.5714286              4  5.840000      7.300000
2               0.7002801              5  5.882353      7.142857
3               1.0416667              7  6.687500      7.133333
4               0.5602241              4  6.411765      7.108696
5               0.7142857              5  6.900000      7.187500
6               0.4373178              3  6.693878      7.130435
7               0.5952381              4  6.395833      7.309524
8               0.7598784              5  6.063830      7.125000
9               0.6868132              5  6.173077      7.133333
10              0.5714286              4  6.460000      7.177778
11              0.7002801              5  6.784314      7.208333
12              0.4201681              3  6.137255      7.113636
13              0.5830904              4  6.775510      7.063830
14              0.4464286              3  6.625000      7.227273
15              0.5952381              4  6.291667      7.190476
   EmergenceRateIndex_SG EmergenceRateIndex_SG_mod
1                    292                  7.300000
2                    300                  7.142857
3                    321                  7.133333
4                    327                  7.108696
5                    345                  7.187500
6                    328                  7.130435
7                    307                  7.309524
8                    285                  7.125000
9                    321                  7.133333
10                   323                  7.177778
11                   346                  7.208333
12                   313                  7.113636
13                   332                  7.063830
14                   318                  7.227273
15                   302                  7.190476
   EmergenceRateIndex_BilbroWanjura EmergenceRateIndex_Fakorede PeakValue
1                          5.970149                    8.375000  9.500000
2                          6.125000                    8.326531  9.313725
3                          6.553398                    7.324444 10.416667
4                          6.675079                    7.640359 10.049020
5                          7.045872                    7.096354 11.250000
6                          6.696203                    7.317580 10.714286
7                          6.277580                    7.646259 10.416667
8                          5.818182                    8.078125  9.574468
9                          6.553398                    7.934815  9.855769
10                         6.596091                    7.580247 10.250000
11                         7.067485                    7.216146 11.029412
12                         6.389439                    7.981921  9.803922
13                         6.776074                    7.231326 10.969388
14                         6.496644                    7.388430 10.677083
15                         6.167832                    7.782313 10.156250
   GermValue_Czabator GermValue_DP GermValue_Czabator_mod GermValue_DP_mod
1            54.28571     57.93890               54.28571         39.56076
2            54.78662     52.58713               54.78662         40.99260
3            69.75446     68.62289               69.75446         53.42809
4            64.74158     70.43331               64.74158         48.86825
5            77.14286     80.16914               77.14286         56.23935
6            71.84506     76.51983               71.84506         53.06435
7            65.10417     69.41325               65.10417         47.37690
8            58.20345     56.00669               58.20345         43.67948
9            60.92165     58.13477               60.92165         45.30801
10           65.89286     70.91875               65.89286         49.10820
11           74.14731     77.39782               74.14731         54.27520
12           60.41632     64.44988               60.41632         44.71582
13           75.15470     78.16335               75.15470         54.94192
14           69.90947     74.40140               69.90947         51.41913
15           63.47656     67.62031               63.47656         46.48043
      CUGerm GermSynchrony GermUncertainty
1  0.7092199     0.2666667        2.062987
2  0.5051546     0.2346109        2.321514
3  0.3975265     0.2242424        2.462012
4  0.4672113     0.2502415        2.279215
5  0.4312184     0.2606383        2.146051
6  0.4934701     0.2792271        2.160545
7  0.7371500     0.2729384        2.040796
8  0.4855842     0.2256410        2.357249
9  0.4446640     0.2494949        2.321080
10 0.5584666     0.2555556        2.187983
11 0.4288905     0.2686170        2.128670
12 0.4760266     0.2737844        2.185245
13 0.4023679     0.2506938        2.241181
14 0.5383760     0.2991543        2.037680
15 0.6133519     0.2497096        2.185028

FourPHFfit.bulk()

This wrapper function can be used to fit the four-parameter hill function for multiple samples in batch.

data(gcdata)

counts.per.intervals <- c("Day01", "Day02", "Day03", "Day04", "Day05",
                          "Day06", "Day07", "Day08", "Day09", "Day10",
                          "Day11", "Day12", "Day13", "Day14")

FourPHFfit.bulk(gcdata, total.seeds.col = "Total Seeds",
                    counts.intervals.cols = counts.per.intervals,
                    intervals = 1:14, partial = TRUE,
                    fix.y0 = TRUE, fix.a = TRUE, xp = c(10, 60),
                    tmax = 20, tries = 3, umax = 90, umin = 10)
   Genotype Rep Day01 Day02 Day03 Day04 Day05 Day06 Day07 Day08 Day09 Day10
1        G1   1     0     0     0     0     4    17    10     7     1     0
2        G2   1     0     0     0     1     3    15    13     6     2     1
3        G3   1     0     0     0     2     3    18     9     8     2     1
4        G4   1     0     0     0     0     4    19    12     6     2     1
5        G5   1     0     0     0     0     5    20    12     8     1     0
6        G1   2     0     0     0     0     3    21    11     7     1     1
7        G2   2     0     0     0     0     4    18    11     7     1     0
8        G3   2     0     0     0     1     3    14    12     6     2     1
9        G4   2     0     0     0     1     3    19    10     8     1     1
10       G5   2     0     0     0     0     4    18    13     6     2     1
11       G1   3     0     0     0     0     5    21    11     8     1     0
12       G2   3     0     0     0     0     3    20    10     7     1     1
13       G3   3     0     0     0     0     4    19    12     8     1     1
14       G4   3     0     0     0     0     3    21    11     6     1     0
15       G5   3     0     0     0     0     4    17    10     8     1     1
   Day11 Day12 Day13 Day14 Total Seeds                a                b
1      1     0     0     0          50               80 9.88193689239939
2      0     1     0     0          51 82.3529411764706 9.22766646359687
3      1     1     0     0          48            93.75 7.79305096503615
4      1     1     0     0          51 90.1960784313725 8.92565503394839
5      0     1     1     0          50               96  9.4191816695981
6      1     1     0     0          49 93.8775510204082 9.45014899129514
7      1     0     0     0          48             87.5 10.1724586100529
8      0     1     0     0          47 85.1063829787234 8.94069602989349
9      1     1     0     0          52 86.5384615384615  8.6173913532163
10     0     1     0     0          50               90 9.60884373087692
11     0     1     1     0          51 94.1176470588235 9.40021183872586
12     1     1     0     0          51 86.2745098039216 9.16252658054406
13     0     1     1     0          49 95.9183673469388 8.99520959277319
14     1     1     0     0          48 91.6666666666667 10.3918447990981
15     1     0     0     0          48             87.5 9.13674439831543
                  c y0 lag           Dlag50        t50.total     txp.total_10
1  6.03495355423622  0   0 6.03495355423622 6.35512149738159 4.95626430996844
2  6.17519294875847  0   0 6.17519294875847 6.47349043979169 4.98323617961634
3  6.13811027323845  0   0 6.13811027323845 6.24419102980473 4.67302155333174
4  6.12517308176588  0   0 6.12517308176588 6.27679437746254 4.85087548237175
5  6.04964210720327  0   0 6.04964210720327 6.10343321091848 4.81412549010201
6  6.09741485213496  0   0 6.09741485213496 6.18227860747235 4.86863251431733
7  6.02985089631599  0   0 6.02985089631599 6.20281219696422 4.93042184740182
8  6.18977354961439  0   0 6.18977354961439 6.43951015764455 4.94005695310539
9  6.12512151399929  0   0 6.12512151399929 6.35217197764166 4.83665841861718
10 6.10950363575767  0   0 6.10950363575767 6.25304320794668 4.92062915221628
11 6.01875974061195  0   0 6.01875974061195 6.09943499335382 4.79862683383817
12  6.1084516820797  0   0  6.1084516820797 6.32618435705024 4.89359557090626
13 6.14901168803061  0   0 6.14901168803061 6.20750091288263 4.84130798267247
14 6.01591019543247  0   0 6.01591019543247 6.12238872898609 4.91514013767951
15 6.12157936163499  0   0 6.12157936163499 6.31739163301497 4.89250226946576
       txp.total_60   t50.Germinated txp.Germinated_10 txp.Germinated_60
1  6.74459834631771 6.03495355423622   4.8318073794034  6.28772357367188
2  6.87260337968692 6.17519294875847  4.86675518549505  6.45258151256586
3  6.60843809251509 6.13811027323845  4.63006208020014  6.46592435698387
4  6.61496814302537 6.12517308176588  4.78859693817119  6.40983765941072
5  6.38678874941426 6.04964210720327  4.79094574322756  6.31574586639992
6  6.47759860932629 6.09741485213496  4.83247140619904  6.36472210249767
7     6.51049505523 6.02985089631599  4.85847638047658   6.2750496018235
8  6.82329908278267 6.18977354961439  4.84110536088622  6.47694540370958
9  6.73327569782723 6.12512151399929  4.74657350251934  6.42020821882777
10  6.5665061956458 6.10950363575767  4.86068135560336  6.37282341572477
11  6.3912906236839 6.01875974061195  4.76424552194859   6.2840509537431
12 6.68452626570581  6.1084516820797  4.80601279742022  6.38483647023757
13 6.50995387022312  6.1490116880306  4.81639290881553  6.43252427366119
14 6.39749097966013 6.01591019543247  4.86939775646343   6.2552761045868
15 6.66724718740801 6.12157936163499  4.81308335438754  6.39935718177504
      Uniformity_90    Uniformity_10       Uniformity             TMGR
1  7.53768963494679  4.8318073794034 2.70588225554338 5.91219440465559
2  7.83540706301571 4.86675518549505 2.96865187752066 6.03128155417137
3  8.13734180531911 4.63006208020014 3.50727972511896 5.93817948829363
4  7.83480960415051 4.78859693817119 3.04621266597932 5.97268622562109
5  7.63902819750811 4.79094574322756 2.84808245428055 5.91428884333636
6  7.69346877693759 4.83247140619904 2.86099737073854 5.96187868562603
7  7.48364280989593 4.85847638047658 2.62516642941935 5.91405695229978
8  7.91416293168472 4.84110536088622 3.07305757079851 6.03619216805867
9  7.90404141879274 4.74657350251934  3.1574679162734  5.9616310497804
10 7.67917745365204 4.86068135560336 2.81849609804867 5.97811533002658
11 7.60361082322955 4.76424552194859 2.83936530128096 5.88355748786772
12 7.76385405638773 4.80601279742022 2.95784125896751  5.9640804983933
13 7.85034474042432 4.81639290881553 3.03395183160878 5.99827012388754
14 7.43237198716613 4.86939775646343  2.5629742307027 5.90518049089766
15 7.78580612916975 4.81308335438754 2.97272277478221 5.97608676470078
                AUC              MGT         Skewness          msg
1  1108.97550938753  6.6322519662712 1.09897315806444 #1. success 
2  1128.55880088539 6.78440735640875 1.09865512101493 #1. success 
3  1283.69307344325  6.7727423279724 1.10339209080373 #1. success 
4  1239.88674124826 6.73966592721389 1.10032252758331 #1. success 
5  1328.32820017628 6.65498075748102 1.10006189449736 #1. success 
6  1294.46271443954 6.70247312592894  1.0992319349211 #1. success 
7  1213.90764565674 6.62241708548249 1.09827211308468 #1. success 
8  1164.34586106316 6.80400021213917 1.09923249333783 #1. success 
9  1188.79304149759  6.7452410863068 1.10124200326315 #1. success 
10 1240.22733172773 6.71189998816383 1.09859988442931 #1. success 
11 1305.20007906005 6.62424817630914 1.10060020033889 #1. success 
12  1188.0211599463 6.71863893649018 1.09989229450739 #1. success 
13 1316.40687295539 6.76227360647556 1.09973341238539 #1. success 
14 1273.38526597424 6.60496678828807  1.0979164538232 #1. success 
15 1203.66421628837 6.73226579042194 1.09975961965212 #1. success 
          Fit_sigma Fit_isConv           Fit_finTol        Fit_logLik
1  1.61522002910957       TRUE  2.8528290840768e-12  -25.498681342686
2  1.11537185901124       TRUE 5.11413134063332e-12 -20.3147146781893
3  2.43270386985341       TRUE 8.43982661535847e-11 -31.2321314996742
4  2.39658164351394       TRUE 3.38218342221808e-12 -31.0226924019787
5  2.39966172990826       TRUE 6.74447164783487e-11 -31.0406736477542
6  3.03496223650969       TRUE 3.95630195271224e-11  -34.328870450832
7  1.66301938705135       TRUE 3.90798504668055e-12 -25.9069727183683
8  1.12070433595621       TRUE 4.32720526077901e-12 -20.3814877326307
9  2.42996010854989       TRUE 1.77209358298569e-11 -31.2163324798379
10 1.68665620116432       TRUE 8.19966317067156e-12 -26.1045565628368
11 2.62811272107047       TRUE 1.32729383039987e-11 -32.3138085946749
12 2.87814601795845       TRUE 3.51434437106946e-11 -33.5861335093548
13 2.60458797517776       TRUE 1.00897068477934e-11 -32.1879276469568
14 2.76475621724483       TRUE 9.80548975348938e-13  -33.023419198233
15 1.95400807212262       TRUE 8.73967564984923e-13 -28.1644422917083
            Fit_AIC          Fit_BIC     Fit_deviance Fit_df.residual Fit_nobs
1  56.9973626853719 58.9145346742177 31.3072289092405              12       14
2  46.6294293563787 48.5466013452244 14.9286526064904              12       14
3  68.4642629993484 70.3814349881942 71.0165774207973              12       14
4  68.0453848039574 69.9625567928032  68.923242888336              12       14
5  68.0813472955084 69.9985192843541 69.1005170158358              12       14
6  74.6577409016639 76.5749128905097 110.531949324479              12       14
7  57.8139454367367 59.7311174255824 33.1876017805038              12       14
8  46.7629754652615 48.6801474541073 15.0717385035725              12       14
9  68.4326649596759 70.3498369485217 70.8564735497253              12       14
10 58.2091131256735 60.1262851145193 34.1377096911126              12       14
11 70.6276171893498 72.5447891781956 82.8837176958294              12       14
12 73.1722670187096 75.0894390075554 99.4046940082808              12       14
13 70.3758552939136 72.2930272827594 81.4065422452872              12       14
14 72.0468383964661 73.9640103853119 91.7265232895271              12       14
15 62.3288845834165 64.2460565722623 45.8177705510444              12       14

Multiple fitted curves generated in batch can also be plotted.

data(gcdata)

counts.per.intervals <- c("Day01", "Day02", "Day03", "Day04", "Day05",
                          "Day06", "Day07", "Day08", "Day09", "Day10",
                          "Day11", "Day12", "Day13", "Day14")

fits <- FourPHFfit.bulk(gcdata, total.seeds.col = "Total Seeds",
                    counts.intervals.cols = counts.per.intervals,
                    intervals = 1:14, partial = TRUE,
                    fix.y0 = TRUE, fix.a = TRUE, xp = c(10, 60),
                    tmax = 20, tries = 3, umax = 90, umin = 10)

# Plot FPHF curves
plot(fits, group.col = "Genotype")

# Plot ROG curves
plot(fits, rog = TRUE, group.col = "Genotype")

# Plot FPHF curves with points
plot(fits, group.col = "Genotype", show.points = TRUE)

# Plot FPHF curves with annotations
plot(fits, group.col = "Genotype", annotate = "t50.total")

plot(fits, group.col = "Genotype", annotate = "t50.germ")

plot(fits, group.col = "Genotype", annotate = "tmgr")

plot(fits, group.col = "Genotype", annotate = "mgt")

plot(fits, group.col = "Genotype", annotate = "uniformity")

# Plot ROG curves with annotations
plot(fits, rog = TRUE, group.col = "Genotype", annotate = "t50.total")

plot(fits, rog = TRUE, group.col = "Genotype", annotate = "t50.germ")

plot(fits, rog = TRUE, group.col = "Genotype", annotate = "tmgr")

plot(fits, rog = TRUE, group.col = "Genotype", annotate = "mgt")

plot(fits, rog = TRUE, group.col = "Genotype", annotate = "uniformity")

# Change colour of curves using ggplot2 options
library(ggplot2)
curvesplot <- plot(fits, group.col = "Genotype")

# 'Dark2' palette from RColorBrewer
curvesplot + scale_colour_brewer(palette = "Dark2")

# Manual colours
curvesplot +
  scale_colour_manual(values = c("Coral", "Brown", "Blue",
                                 "Aquamarine", "Red"))

Citing germinationmetrics

To cite the R package 'germinationmetrics' in publications use:

  Aravind, J., Vimala Devi, S., Radhamani, J., Jacob, S. R., and
  Kalyani Srinivasan ().  germinationmetrics: Seed Germination Indices
  and Curve Fitting. R package version 0.1.8.9000,
  https://github.com/aravind-j/germinationmetricshttps://cran.r-project.org/package=germinationmetrics.

A BibTeX entry for LaTeX users is

  @Manual{,
    title = {germinationmetrics: Seed Germination Indices and Curve Fitting},
    author = {J. Aravind and S. {Vimala Devi} and J. Radhamani and Sherry Rachel Jacob and {Kalyani Srinivasan}},
    note = {R package version 0.1.8.9000 https://aravind-j.github.io/germinationmetrics/ https://CRAN.R-project.org/package=germinationmetrics},
  }

This free and open-source software implements academic research by the
authors and co-workers. If you use it, please support the project by
citing the package.

Session Info

R version 4.3.2 (2023-10-31)
Platform: x86_64-apple-darwin20 (64-bit)
Running under: macOS Monterey 12.7.3

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/libRblas.0.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/libRlapack.dylib;  LAPACK version 3.11.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: UTC
tzcode source: internal

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] germinationmetrics_0.1.8.9000 ggplot2_3.5.0                

loaded via a namespace (and not attached):
 [1] gtable_0.3.4       xfun_0.42          bslib_0.6.1        ggrepel_0.9.5     
 [5] lattice_0.21-9     mathjaxr_1.6-0     vctrs_0.6.5        tools_4.3.2       
 [9] Rdpack_2.6         bitops_1.0-7       generics_0.1.3     curl_5.2.0        
[13] tibble_3.2.1       fansi_1.0.6        highr_0.10         pkgconfig_2.0.3   
[17] gslnls_1.2.0       Matrix_1.6-1.1     data.table_1.15.0  RColorBrewer_1.1-3
[21] desc_1.4.3         lifecycle_1.0.4    compiler_4.3.2     farver_2.1.1      
[25] stringr_1.5.1      textshaping_0.3.7  munsell_0.5.0      htmltools_0.5.7   
[29] sass_0.4.8         RCurl_1.98-1.14    yaml_2.3.8         pillar_1.9.0      
[33] pkgdown_2.0.7      jquerylib_0.1.4    tidyr_1.3.1        cachem_1.0.8      
[37] tidyselect_1.2.0   digest_0.6.34      stringi_1.8.3      dplyr_1.1.4       
[41] reshape2_1.4.4     purrr_1.0.2        pander_0.6.5       labeling_0.4.3    
[45] fastmap_1.1.1      grid_4.3.2         colorspace_2.1-0   cli_3.6.2         
[49] magrittr_2.0.3     XML_3.99-0.16.1    utf8_1.2.4         broom_1.0.5       
[53] withr_3.0.0        scales_1.3.0       backports_1.4.1    rmarkdown_2.25    
[57] httr_1.4.7         ragg_1.2.7         memoise_2.0.1      evaluate_0.23     
[61] knitr_1.45         rbibutils_2.2.16   rlang_1.1.3        Rcpp_1.0.12       
[65] glue_1.7.0         jsonlite_1.8.8     R6_2.5.1           plyr_1.8.9        
[69] systemfonts_1.0.5  fs_1.6.3          

References

Allan, R. E., Vogel, O. A., and Peterson, C. J. (1962). Seedling emergence rate of fall-sown wheat and its association with plant height and coleoptile length. Agronomy Journal 54, 347. doi:10.2134/agronj1962.00021962005400040022x.
Al-Mudaris, M. A. (1998). Notes on various parameters recording the speed of seed germination. Der Tropenlandwirt - Journal of Agriculture in the Tropics and Subtropics 99, 147–154. Available at: https://www.jarts.info/index.php/tropenlandwirt/article/download/1495/671.
AOSA (1983). Seed Vigor Testing Handbook. Ithaca, NY, USA: Association of Official Seed Analysts.
Baskin, C. C., and Baskin, J. M. (1998). Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination. San Diego: Academic Press.
Bewley, J. D., and Black, M. (1994). Physiology of Development and Germination. New York, USA: Plenum Publishing Corporation Available at: https://www.cabdirect.org/cabdirect/abstract/19950315483.
Bilbro, J. D., and Wanjura, D. F. (1982). Soil crusts and cotton emergence relationships. Transactions of the ASAE 25, 1484–1487. doi:10.13031/2013.33750.
Bonner, F. T. (1967). Ideal sowing depth for sweetgum seed. Tree Planters’ Notes 18, 1–1. Available at: https://www.fs.usda.gov/treesearch/pubs/download/42583.pdf.
Bouton, J. H., Dudeck, A. E., and Smith, R. L. (1976). Germination in freshly harvested seed of centipedegrass. Agronomy Journal 68, 991. doi:10.2134/agronj1976.00021962006800060040x.
Bradbeer, J. W. (1988). Seed Dormancy and Germination. Glasgow; London: Blackie Available at: www.springer.com/in/book/9780216916364 [Accessed January 15, 2018].
Brown, R. F., and Mayer, D. G. (1988). Representing cumulative germination. 1. A critical analysis of single-value germination indices. Annals of Botany 61, 117–125. doi:10.1093/oxfordjournals.aob.a087534.
Chaudhary, T. N., and Ghildyal, B. P. (1970). Effect of temperature associated with levels of bulk density on rice seedling emergence. Plant and Soil 33, 87–90. doi:10.1007/bf01378199.
Chopra, U. K., and Chaudhary, T. N. (1980). Effect of soil temperature alteration by soil covers on seedling emergence of wheat (Triticum aestivum L.) Sown on two dates. Plant and Soil 57, 125–129. doi:10.1007/bf02139648.
Coolbear, P., Francis, A., and Grierson, D. (1984). The effect of low temperature pre-sowing treatment on the germination performance and membrane integrity of artificially aged tomato seeds. Journal of Experimental Botany 35, 1609–1617. doi:10.1093/jxb/35.11.1609.
Czabator, F. J. (1962). Germination value: An index combining speed and completeness of pine seed germination. Forest Science 8, 386–396. doi:10.1093/forestscience/8.4.386.
Djavanshir, K., and Pourbeik, H. (1976). Germination value-A new formula. Silvae Genetica 25, 79–83. Available at: https://www.thuenen.de/media/institute/fg/PDF/Silvae_Genetica/1976/Vol._25_Heft_2/25_2_79.pdf.
Edmond, J. B., and Drapala, W. J. (1958). The effects of temperature, sand and soil, and acetone on germination of okra seed. Proceedings of the American Society for Horticultural Science 71, 428–434.
Edwards, T. I. (1932). Temperature relations of seed germination. The Quarterly Review of Biology 7, 428–443. doi:10.1086/394417.
El-Kassaby, Y. A., Moss, I., Kolotelo, D., and Stoehr, M. (2008). Seed germination: Mathematical representation and parameters extraction. Forest Science 54, 220–227. doi:10.1093/forestscience/54.2.220.
Ellis, R. H., and Roberts, E. H. (1980). Improved equations for the prediction of seed longevity. Annals of Botany 45, 13–30. doi:10.1093/oxfordjournals.aob.a085797.
Erbach, D. C. (1982). Tillage for continuous corn and corn-soybean rotation. Transactions of the ASAE 25, 906–0911. doi:10.13031/2013.33638.
Evetts, L. L., and Burnside, O. C. (1972). Germination and seedling development of common milkweed and other species. Weed Science 20, 371–378. doi:10.1017/S004317450003589x.
Fakorede, M. A. B., and Agbana, S. B. (1983). Heterotic effects and association of seedling vigour with mature characteristics and grain yield in some tropical maize cultivars. Maydica 28, 327–338.
Fakorede, M. A. B., and Ayoola, A. O. (1980). Relation between seedling vigor and selection for yield improvement in maize. Maydica 25, 135–147.
Fakorede, M. A. B., and Ojo, D. K. (1981). Variability for seedling vigour in maize. Experimental Agriculture 17, 195–201. doi:10.1017/s0014479700011455.
Farooq, M., Basra, S. M. A., Ahmad, N., and Hafeez, K. (2005). Thermal hardening: A new seed vigor enhancement tool in rice. Journal of Integrative Plant Biology 47, 187–193. doi:10.1111/J.1744-7909.2005.00031.x.
George, D. W. (1961). Influence of germination temperature on the expression of post-harvest dormancy in wheat. in Crop Science Abstracts; Western Society of Crop Science Annual Meeting, 1961 (Western Society of Crop Science), 15.
Goloff, A. A., and Bazzaz, F. A. (1975). A germination model for natural seed populations. Journal of Theoretical Biology 52, 259–283. doi:10.1016/0022-5193(75)90001-6.
Gomes, F. P. (1960). Curso De Estatística Experimental. Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo Available at: https://books.google.de/books?id=ZckqGwAACAAJ.
Goodchild, N. A., and Walker, M. G. (1971). A method of measuring seed germination in physiological studies. Annals of Botany 35, 615–621. doi:10.1093/oxfordjournals.aob.a084504.
Gordon, A. G. (1969). Some observations on the germination energy tests for cereals. Proceedings of the Association of Official Seed Analysts 59, 58–72. Available at: https://www.jstor.org/stable/23432357 [Accessed December 11, 2018].
Gordon, A. G. (1971). The germination resistance test - A new test for measuring germination quality of cereals. Canadian Journal of Plant Science 51, 181–183. doi:10.4141/cjps71-036.
Grose, R. J., and Zimmer, W. J. (1958). Some laboratory germination responses of the seeds of river red gum, Eucalyptus camaldulensis Dehn. Syn. Eucalyptus rostrata Schlecht. Australian Journal of Botany 6, 129. doi:10.1071/bt9580129.
Haugland, E., and Brandsaeter, L. O. (1996). Experiments on bioassay sensitivity in the study of allelopathy. Journal of Chemical Ecology 22, 1845–1859. doi:10.1007/BF02028508.
Heydecker, W. (1972). Seed Ecology. Proceedings of the Nineteenth Easter School in Agricultural Science, University of Nottingham, 1972. University Park, USA: Pennsylvania State University Press.
Hsu, F. H., and Nelson, C. J. (1986). Planting date effects on seedling development of perennial warm-season forage grasses. I. Field emergence. Agronomy Journal 78, 33–38. doi:10.2134/agronj1986.00021962007800010008x.
ISTA (2015). “Chapter 5: The germination test,” in International Rules for Seed Testing. International Seed Testing Association, Zurich, Switzerland. (International Seed Testing Association), i-5-56. Available at: https://doi.org/10.15258/istarules.2015.05.
Kader, M. A. (2005). A comparison of seed germination calculation formulae and the associated interpretation of resulting data. Journal and Proceedings of the Royal Society of New South Wales 138, 65–75. Available at: https://royalsoc.org.au/images/pdf/journal/138_Kader.pdf.
Kendrick, R. E., and Frankland, B. (1969). Photocontrol of germination in Amaranthus caudatus. Planta 85, 326–339. doi:10.1007/bf00381281.
Khamassi, K., Harbaoui, K., Jaime, A. T. da S., and Jeddi, F. B. (2013). Optimal germination temperature assessed by indices and models in field bean (Vicia faba L. Var. Minor). Agriculturae Conspectus Scientificus 78, 131–136. Available at: https://hrcak.srce.hr/104663.
Khan, M. A., and Ungar, I. A. (1984). The effect of salinity and temperature on the germination of polymorphic seeds and growth of Atriplex triangularis Willd. American Journal of Botany 71, 481–489. doi:10.2307/2443323.
Khandakar, A. L., and Bradbeer, J. W. (1983). Jute seed quality. Bangladesh Agricultural Research Council, Dhaka.
Kotowski, F. (1926). Temperature relations to germination of vegetable seeds. Proceedings of the American Society for Horticultural Science 23, 176–184.
Labouriau, L. G. (1983a). A Germinação Das Sementes. Organização dos Estados Americanos. Programa Regional de Desenvolvimento Científico e Tecnológico. Série de Biologia. Monografia 24.
Labouriau, L. G. (1983b). Uma nova linha de pesquisa na fisiologia da germinação das sementes. in Anais do XXXIV Congresso Nacional de Botânica. SBB, Porto Alegre (Sociedade Botânica do Brasil), 11–50.
Labouriau, L. G., and Valadares, M. E. B. (1976). On the germination of seeds of Calotropis procera (Ait.) Ait. f. Anais da Academia Brasileira de Ciências 48.
Lyon, J. L., and Coffelt, R. J. (1966). Rapid method for determining numerical indexes for time-course curves. Nature 211, 330–330. doi:10.1038/211330a0.
Maguire, J. D. (1962). Speed of germination - Aid in selection and evaluation for seedling emergence and vigor. Crop Science 2, 176–177. doi:10.2135/cropsci1962.0011183x000200020033x.
Melville, A. H., Galletta, G. J., Draper, A. D., and Ng, T. J. (1980). Seed germination and early seedling vigor in progenies of inbred strawberry selections. HortScience 15, 749–750.
Mock, J. J., and Eberhart, S. A. (1972). Cold tolerance in adapted maize populations. Crop Science 12, 466–469. doi:10.2135/cropsci1972.0011183x001200040021x.
Negm, F. B., and Smith, O. E. (1978). Effects of ethylene and carbon dioxide on the germination of osmotically inhibited lettuce seed. Plant Physiology 62, 473–476. doi:10.1104/pp.62.4.473.
Nichols, M. A., and Heydecker, W. (1968). Two approaches to the study of germination data. Proceedings of the International Seed Testing Association 33, 531–540.
Primack, R. B. (1985). Longevity of individual flowers. Annual Review of Ecology and Systematics 16, 15–37. doi:10.1146/annurev.es.16.110185.000311.
Quintanilla, L. G., Pajarón, S., Pangua, E., and Amigo, J. (2000). Effect of temperature on germination in northernmost populations of Culcita macrocarpa and Woodwardia radicans. Plant Biology 2, 612–617. doi:10.1055/s-2000-16638.
Ranal, M. A. (1999). Effects of temperature on spore germination in some fern species from semideciduous mesophytic forest. American Fern Journal 89, 149. doi:10.2307/1547349.
Ranal, M. A., and Santana, D. G. de (2006). How and why to measure the germination process? Brazilian Journal of Botany 29, 1–11. doi:10.1590/s0100-84042006000100002.
Reddy, L. V. (1978). Effect of temperature on seed dormancy and alpha-amylase activity during kernel maturation and germination in wheat (Triticum aestivum L.) cultivars. Available at: https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/1j92gb854.
Reddy, L. V., Metzger, R. J., and Ching, T. M. (1985). Effect of temperature on seed dormancy of wheat. Crop Science 25, 455. doi:10.2135/cropsci1985.0011183X002500030007x.
Roh, M., Bentz, J.-A., Wang, P., Li, E., and Koshioka, M. (2004). Maturity and temperature stratification affect the germination of Styrax japonicus seeds. The Journal of Horticultural Science and Biotechnology 79, 645–651. doi:10.1080/14620316.2004.11511820.
Santana, D. G. de, and Ranal, M. A. (2004). Análise Da Germinação: Um Enfoque Estatístico. Brasília: Universidade de Brasília.
Schrader, J. A., and Graves, W. R. (2000). Seed germination and seedling growth of Alnus maritima from its three disjunct populations. Journal of the American Society for Horticultural Science 125, 128–134. doi:10.21273/JASHS.125.1.128.
Scott, S. J., Jones, R. A., and Williams, W. A. (1984). Review of data analysis methods for seed germination. Crop Science 24, 1192–1199. doi:10.2135/cropsci1984.0011183x002400060043x.
Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal 27, 379–423. doi:10.1002/j.1538-7305.1948.tb01338.x.
Shmueli, M., and Goldberg, D. (1971). Emergence, early growth, and salinity of five vegetable crops germinated by sprinkle and trickle irrigation in an arid zone. HortScience 6, 563–565.
Smith, P. G., and Millet, A. H. (1964). Germinating and sprouting responses of the tomato at low temperatures. Proceedings of the American Society for Horticultural Science 84, 480–484.
Throneberry, G. O., and Smith, F. G. (1955). Relation of respiratory and enzymatic activity to corn seed viability. Plant Physiology 30, 337–343. doi:10.1104/pp.30.4.337.
Timson, J. (1965). New method of recording germination data. Nature 207, 216. doi:10.1038/207216a0.
Tucker, H., and Wright, L. N. (1965). Estimating rapidity of germination. Crop Science 5, 398–399. doi:10.2135/cropsci1965.0011183X000500050006x.
Vallance, K. (1950). Studies on the germination of the seeds of Striga hermonthica I. The influence of moisture-treatment, stimulant-dilution, and after-ripening on germination. Annals of Botany 14, 347–363. doi:10.1093/oxfordjournals.aob.a083251.
Wardle, D. A., Ahmed, M., and Nicholson, K. S. (1991). Allelopathic influence of nodding thistle (Carduus nutans L.) Seeds on germination and radicle growth of pasture plants. New Zealand Journal of Agricultural Research 34, 185–191. doi:10.1080/00288233.1991.10423358.
Went, F. W. (1957). The experimental control of plant growth. Chronica Botanica Co., Waltham, Mass., USA; The Ronald Press Co., New York, USA.